Maximizing Parallelism in the Construction
of BVHs, Octrees, and k-d Trees

Tero Karras

NVIDIA Research

<3

HIGH-PERFORMANCE GRAPHICS
|'|!g NVIDIA, [ohfsromanc ermic

rees

Better Faster

~ Pharr & Humphreys

< ﬁt\;nvmm
Real-time ray,tracing

NVIDIA

Path tracing

Crassin et al.

Amenta et al. ‘

-

) Surface'reconstruction Voxel-based
PSSR sl e

Uchida

Outline

= Fastest existing methods are sequential
= Parallelize within each hierarchy level
= But not between levels

Outline

= Fastest existing methods are sequential
= Parallelize within each hierarchy level
= But not between levels

= Lack of parallelism
= Small workloads bottlenecked by top levels
= Sub-linear scaling of performance

Outline

= Novel way to build the entire tree in parallel
= Two algorithmic “building blocks”
= Fast, scalable

Outline

= Novel way to build the entire tree in parallel
= Two algorithmic “building blocks”
= Fast, scalable

= Main focus: BVHs

= Point-based octrees and k-d trees also covered
in the paper

Bounding volume hierarchy

N

ANVAN
| AAAD

;;;;;;;;;;;;;;

Bounding volume hierarchy

LBVH - Lauterbach et al. [2009]

1. Assign Morton codes
2. Sort primitives

3. Generate hierarchy
4. Fit bounding boxes

TTT
i n
©coo
RO R
[N
[EN
_

LBVH - Lauterbach et al. [2009]

1. Assign Morton codes

2. Sort primitives

3. Generate hierarchy BN
4. Fit bounding boxes

LBVH - Lauterbach et al. [2009]

1
2.
3.
4

Assign Morton codes
Sort primitives
Generate hierarchy

Fit bounding boxes

:=0.1 0 1 0
podd= 101011110010
p.=0. 1 1 0 O

LBVH - Lauterbach et al. [2009]

1
2.
3.
4

Assign Morton codes
Sort primitives
Generate hierarchy

Fit bounding boxes

N\
N

N
N

LBVH - Lauterbach et al. [2009]

1. Assign Morton codes
2. Sort primitives

3. Generate hierarchy
4. Fit bounding boxes

Binary radix tree

/\

‘-—loon—u—x‘e
P

Binary radix tree

16

Binary radix tree

17

Binary radix tree

Binary radix tree

(

n-1 <

Longest common prefix

Longest common prefix

21

Longest common prefix

5(0,3) =2

” 5(0,3) = 2
.03

4

28 o 4FL] 8(56)=4

e

N

g~
YT)

‘OOI—‘OO
ll—‘OI—‘
Froo-la

N
N

Garanzha et al. [2011]

Level O 1 node

Level 1 2 nodes

Level 2 3 nodes

Level 3

e

—

Our method

'7

S-ooo]
Sorool
~oroo]
~roon]

Soorn]

ool

O R R R,R

N
~

Our method

= Define a numbering scheme for the nodes
= Gain some knowledge of their identity
= Establish a connection with the keys

Our method

= Define a numbering scheme for the nodes
= Gain some knowledge of their identity
= Establish a connection with the keys

= Find the children of a given node
= Only look at node index and nearby keys

Our method

= Define a numbering scheme for the nodes
= Gain some knowledge of their identity
= Establish a connection with the keys

= Find the children of a given node
= Only look at node index and nearby keys

= Do this for all nodes in parallel

Numbering scheme

Numbering scheme

v & ST
g€ °

d @ Py
oo & &) T es s
= S

" N oo
e) y

o /U\

m o) / \nd 00000
S

2

Numbering scheme

Algorithm

o

32

Algorithm

5(2,3)=4 v 52

34

)

6(3,4) = 0

O R R R,R

33

Algorithm

4)=0

a2 603

5(0,3)

Algorithm

5(0,3) =2
CE—)
? o 0 8(2,3)=2

oo

O R R R,R

35

Algorithm

6(0,3)=2

3

=9 @

2

2

I - - O

—— O O i

- O O O

— O O «

OO - O -

O O 1 OO

OO O +d O

OO OO

36

Algorithm

For each node i=0..n-2 in parallel:

1. Determine direction of the range
2. Expand the range as far as possible
3. Find where to split the range
4,

Identify children
Binary search

O(nlogh)

Duplicate keys

= The algorithm only works with unique keys

* Duplicates are common in practice

Duplicate keys

= The algorithm only works with unique keys

* Duplicates are common in practice

= Trick: Augment each key with its index
= Distinguishes between duplicates
= Keys are still in lexicographical order

Duplicate keys

= The algorithm only works with unique keys
* Duplicates are common in practice

= Trick: Augment each key with its index
= Distinguishes between duplicates
= Keys are still in lexicographical order

= Tie-break when evaluating §(i,j)

LBVH

1 RBi=

Assign Morton codes
Sort primitives
Generate hierarchy

Fit bounding boxes

Lauterbach et al. [2009]

Our method

= Need a different approach
= How many levels are there?
= Which nodes are located on a given level?

Our method

= Need a different approach
= How many levels are there?
= Which nodes are located on a given level?

= Traverse paths in the tree in parallel
= Start from leaves, advance toward the root
= Terminate threads using per-node atomic flags

Our method

Results

= Evaluate performance on GTX 480 (Fermi)
= CUDA, 30-bit Morton codes

Results

= Evaluate performance on GTX 480 (Fermi)
= CUDA, 30-bit Morton codes

= Compare against Garanzha et al. [2011]
= |dentical tree (top-level SAH splits disabled)

Results

= Evaluate performance on GTX 480 (Fermi)
= CUDA, 30-bit Morton codes

= Compare against Garanzha et al. [2011]
= |dentical tree (top-level SAH splits disabled)

= Simulate large GPUs
= N times as many cores
= N times the memory bandwidth

Results P

174K triangles

milliseconds

27
1.8 -
1.6

14 -
1.2 -

1 x cores

Morton Sort

Build AABB

Morton Sort Build AABB
Our method

Garanzha et al.
49

L 3 W

Fairy Forest a1
ReSUItS I%Ktriangles i i’ﬁ

sifet,
oy

.

milliseconds
T
1.8

12.5 x
1.6 N

1.4 - // \\ .‘
33.6 x
1.2 - y,

L |
0.6 - j
04 -

0.2 -
0 -

Morton Sort

Build AABB Morton Sort Build AABB
Our method

Garanzha et al.
50

Results Turbine Blade

1.77M triangles

milliseconds

|

4.5 -

4 -

3.5 -

3 -
2.5 -
2 -

1.5 -
1 -
0.5 -
0 -

Morton Sort Build AABB

Our method

Morton Sort

Build AABB
Garanzha et al.
51

Stanford Dragon
Results 871K t:afges
6| I i

Our method Garanzha et al.

52

Acknowledgements

= Timo Aila

Samuli Laine
David Luebke
Jacopo Pantaleoni
Jaakko Lehtinen

For helpful suggestions and proofreading.

Thank You
= Questions «Z

NVIDIA.

HIGH-PERFORMANCE GRAPHICS
PARIS, FRANCE JUNE 95-97, 2012

