Maximizing Parallelism in the Construction
of BVHs, Octrees, and k-d Trees
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Outline

= Fastest existing methods are sequential
= Parallelize within each hierarchy level
= But not between levels

= Lack of parallelism
= Small workloads bottlenecked by top levels
= Sub-linear scaling of performance
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Outline

= Novel way to build the entire tree in parallel
= Two algorithmic “building blocks”
= Fast, scalable

= Main focus: BVHs

= Point-based octrees and k-d trees also covered
in the paper
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Bounding volume hierarchy




LBVH - Lauterbach et al. [2009]

1. Assign Morton codes
2. Sort primitives

3. Generate hierarchy
4. Fit bounding boxes
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LBVH - Lauterbach et al. [2009]

1. Assign Morton codes
2. Sort primitives

3. Generate hierarchy
4. Fit bounding boxes



Binary radix tree
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Binary radix tree
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Longest common prefix
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Longest common prefix
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Garanzha et al. [2011]

Level O 1 node

Level 1 2 nodes
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Our method
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Our method

= Define a numbering scheme for the nodes
= Gain some knowledge of their identity
= Establish a connection with the keys
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Our method

= Define a numbering scheme for the nodes
= Gain some knowledge of their identity
= Establish a connection with the keys

= Find the children of a given node
= Only look at node index and nearby keys

= Do this for all nodes in parallel
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Numbering scheme




Algorithm
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Algorithm
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Algorithm

6(0,3)=2

3

=9 @

2

2

I - - O

—— O O i

- O O O

— O O «

OO - O -

O O 1 OO

OO O +d O

OO OO

36



Algorithm

For each node i=0..n-2 in parallel:

1. Determine direction of the range
2. Expand the range as far as possible
3. Find where to split the range
4,

Identify children
Binary search

O(nlogh)
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Duplicate keys

= The algorithm only works with unique keys
* Duplicates are common in practice

= Trick: Augment each key with its index
= Distinguishes between duplicates
= Keys are still in lexicographical order

= Tie-break when evaluating §(i,j)
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Our method

= Need a different approach
= How many levels are there?
= Which nodes are located on a given level?



Our method

= Need a different approach
= How many levels are there?
= Which nodes are located on a given level?

= Traverse paths in the tree in parallel
= Start from leaves, advance toward the root
= Terminate threads using per-node atomic flags



Our method
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Results

= Evaluate performance on GTX 480 (Fermi)
= CUDA, 30-bit Morton codes

= Compare against Garanzha et al. [2011]
= |dentical tree (top-level SAH splits disabled)

= Simulate large GPUs
= N times as many cores
= N times the memory bandwidth
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Results Turbine Blade
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