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Path Tracing Overview

Cast aray from the camera through the pixel

* At hit point, evaluate material
Determine new incoming direction
Update path throughput

Cast a shadow ray towards a light source
Cast the extension ray and repeat

* At some depth, start using Russian roulette to
terminate path probabilistically
Avoids infinitely long paths



Problems in Megakernel Path Tracer

You can put all code in one kernel, even on a GPU

Ray casts, evaluators and samplers for all materials,
evaluators and samplers for all light source types, path
tracing logic, MIS, new path generation, etc.

BUT:

Lots of code
Bad for instruction cache

Lots of registers used (based on hottest spot)
Bad for latency hiding capacity

Lots of execution divergence
Bad for SIMT execution model (warps of 32 threads)
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Execution Divergence in Path Tracing

Paths may hit different materials
Each material has its own code

Paths may terminate at different lengths
Various reasons

This issue has been investigated before

* Solutions, e.g., path regeneration are known, but they are not
very effective

Not all materials produce a shadow ray
BSDFs with Dirac distribution (mirror, glass)
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Real-World Materials
or
How Bad Can It Be?



Materials Are Expensive

® Composed of
multiple BSDF
layers

® Non-trivial BSDFs

® Procedural
noise everywhere

® Huge textures*

* Not addressed in this work



Example: Car Paint

* Four layers
® Fresnel coat
® Glossy flakes 1 & 2
® Diffuse base

® Coat is asimple dielectric
BSDF with Fresnel weight

* Flakes are Blinn-Phong
BSDFs with procedural
colors and normals

* Base is a diffuse BSDF
with angle-dependent color



Example: Noise Evaluator
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Example: The Entire Car Paint
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And This Isn’t Even a Difficult Case

® Only four layers

® No textures

* No procedural
texcoords

* No filtering
® No out-of-core

® No iterative stuff

* Still ~2x as
expensive to
evaluate as a ray
cast

® In this scene,
probably closer
to 10x
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Problem: How to Evaluate Materials
Efficiently?

* Worst case: Every thread hits a different, expensive
material

* Megakernel runs each sequentially with abysmal
SIMD utilization

* We really need to do better than that
® Otherwise the materials will dominate
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Let’s Solve Everything



It’s Business Time

The recipe to reorganize path tracing to be more
GPU-friendly:

1. Remove the loop around path tracer
Avoid consequences of variable path length
Also enables the two other optimizations

2. Place requests for operations into queues
Ray casts, material evaluations, etc.
Avoids threads idling when executing conditional code

3. Execute operations in separate kernels

Minimize register pressure and instruction cache usage
* Avoid losing latency hiding capacity unnecessarily
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Step 1. Remove the Loop

Keep a pool of paths alive all the time
E.g., one million paths

* At each iteration, advance each of them by one
segment

Cast rays, evaluate materials and lights, accumulate
radiance, update throughput, run the roulette, etc.

If path terminates, generate a new one in its place
Ensure there’s always paths to work on

Similar to previous work
[e.g. Wald 2011, Van Antwerpen 2011, etc.]
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Pros and Cons

+ Variable path length is not an issue anymore
* As previously noted

+ Allows further optimizations

* Collecting requests in operation-specific queues and scheduling
them individually

* This is the big one! Really hard to do in the megakernel approach

Path state must reside in memory
* A simple loop-based method can keep it in registers
Not as bad as it sounds if we use a good memory layout (SOA)

Less “natural” to implement
But only until you get used to it

Doesn’t buy you much performance alone
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Step 2: Per-Operation Queues

Allocate a queue for each primitive operation request
Extension ray casts
Shadow ray casts
New path generation

Material evaluations
®* With separate queues for individual materials

Place requests compactly (i.e., no gaps) into gueues

When executing, use one thread per request
Every thread will have an item to work on

Every thread will be doing the same thing, so there’s very
little execution divergence!
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Step 3: Individual Kernels for Each
Operation

We already have well-optimized kernels for ray casts
from previous research

Now we can use them directly
Optimized for low register count and high perf

Let each material have its own kernel

Some are simple and need few registers
* Combining these into one kernel is sometimes a good idea

Some are complex and need many registers

Smaller code = Won’t overrun instruction caches
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Implementation
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Schematic

Logic
| | |
New Path Material 1 Material 2

=

|

Ext Ray Cast

Shadow Ray Cast

Always operates on
all paths in pool

Each kernel has its
own gueue

Each type of ray has
its own queue
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The Logic Kernel Logic

Does not need a queue, operates on all paths

Does “everything except rays and materials”
If shadow ray was unblocked, add light contribution
Find material and/or light source that ext ray hits
Apply Russian roulette if limit depth exceeded
If path terminated, accumulate to image

Apply depth-dependent extinction for translucent
materials

Generate light sample by sampling light sources

Place path in proper queue according to material at hit
* Orin “new path” queue if path terminated
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New Path Kernel New Path

Generate a new image-space sample
Based on a global path index

Generate camera ray
Place it into extension ray queue

Initialize path state
Init radiance, throughput, pixel position, etc.

Intialize low-discrepancy sequence for the path, used
when generating random numbers in samplers

23



Material Kernels Material n

Generate incoming direction

Evaluate light contribution based on light sample
generated in the logic kernel
Even though we haven’t cast the shadow ray yet

Get the probability of acquiring the light sample from
the sampling of incoming direction
Needed for MIS weights

By evaluating all of these in one go, we can discard
the BSDF stack immediately afterwards

Generate extension ray and potential shadow ray
Place in respective queues
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Ray Cast Kernels

Extension rays

Ext Ray Cast

Shadow Ray Cast

Find first intersection against scene geometry
Utilize optimized kernels from previous research

Store hit data into path state

Shadow rays

We only need to know if the shadow ray is blocked or not

Cheaper than finding the first intersection
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Results
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Test Scenes and Performance

Carpaint City Conference
scene Htri performance (Mpaths/s) speedup
megakernel | wavefront
CARPAINT 9.5K 42.99 58.38 36%
CITY 879K 541 9.70 79%
CONFERENCE | 283K 2.71 8.71 221%

Note: Megakernel has path regeneration
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Execution Time Breakdown

scene logic | new path | materials | ray cast
CARPAINT 2.40 0.86 2.31 4.31
CITY 3.42 0.86 5.47 12.53
CONFERENCE 3.01 0.79 6.37 9.62

(times in milliseconds / 1M path segments)

* The most important takeaway: Ray casts are not the

only expensive part!
* Optimizations yield diminishing returns already
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Conclusions

Path tracing can be reorganized to suit GPUs better
Bonus: Also works in practice

Going to the future, there is no limit on the number and
complexity of materials

Divergence will only get worse

Megakernels will only get bigger

- The proposed approach becomes even more appealing

Time to look beyond accelerating ray casts?
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Future Work

Look at other rendering algorithms
Bidir path tracing, MLT, etc.

There is already good work in this direction
[Van Antwerpen, Davidovic et al.]

Should add complex materials in the mix!

What to do about gigantic textures?

Run materials that have their textures resident while
transferring missing textures on the GPU simultaneously?

Put paths “on hold” while their textures are being loaded,
and let other paths continue?

Always run everything you can, try to make everything else
runnable at the same time by async transfers?
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Thanks!

® Questions
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