


2

Path Tracing Overview

Cast a ray from the camera through the pixel

At hit point, evaluate material

Determine new incoming direction

Update path throughput

Cast a shadow ray towards a light source

Cast the extension ray and repeat

At some depth, start using Russian roulette to 

terminate path probabilistically

Avoids infinitely long paths



3

Problems in Megakernel Path Tracer

You can put all code in one kernel, even on a GPU

Ray casts, evaluators and samplers for all materials, 

evaluators and samplers for all light source types, path 

tracing logic, MIS, new path generation, etc.

BUT:

Lots of code

Bad for instruction cache

Lots of registers used (based on hottest spot)

Bad for latency hiding capacity

Lots of execution divergence

Bad for SIMT execution model (warps of 32 threads)



4

Problems in Megakernel Path Tracer

You can put all code in one kernel, even on a GPU

Ray casts, evaluators and samplers for all materials, 

evaluators and samplers for all light source types, path 

tracing logic, MIS, new path generation, etc.

BUT:

Lots of code

Bad for instruction cache

Lots of registers used (based on hottest spot)

Bad for latency hiding capacity

Lots of execution divergence

Bad for SIMT execution model (warps of 32 threads)



5

Execution Divergence in Path Tracing

Paths may hit different materials

Each material has its own code

Paths may terminate at different lengths

Various reasons

This issue has been investigated before

Solutions, e.g., path regeneration are known, but they are not 

very effective

Not all materials produce a shadow ray

BSDFs with Dirac distribution (mirror, glass)



6

Execution Divergence in Path Tracing

Paths may hit different materials

Each material has its own code

Paths may terminate at different lengths

Various reasons

This issue has been investigated before

Solutions, e.g., path regeneration are known, but they are not 

very effective

Not all materials produce a shadow ray

BSDFs with Dirac distribution (mirror, glass)



7

Real-World Materials

or

How Bad Can It Be?



8

Materials Are Expensive

Composed of

multiple BSDF

layers

Non-trivial BSDFs

Procedural

noise everywhere

Huge textures*

* Not addressed in this work



9

Example: Car Paint

Four layers

Fresnel coat

Glossy flakes 1 & 2

Diffuse base

Coat is a simple dielectric 

BSDF with Fresnel weight

Flakes are Blinn-Phong

BSDFs with procedural

colors and normals

Base is a diffuse BSDF

with angle-dependent color



10

Example: Noise Evaluator



11

Example: The Entire Car Paint



12

And This Isn’t Even a Difficult Case

Only four layers

No textures

No procedural 

texcoords

No filtering

No out-of-core

No iterative stuff

Still ~2x as 

expensive to 

evaluate as a ray 

cast

In this scene, 

probably closer 

to 10x



13

Problem: How to Evaluate Materials 

Efficiently?

Worst case: Every thread hits a different, expensive 

material

Megakernel runs each sequentially with abysmal 

SIMD utilization

We really need to do better than that

Otherwise the materials will dominate



14

Let’s Solve Everything



15

It’s Business Time

The recipe to reorganize path tracing to be more 

GPU-friendly:

1. Remove the loop around path tracer

Avoid consequences of variable path length

Also enables the two other optimizations

2. Place requests for operations into queues

Ray casts, material evaluations, etc.

Avoids threads idling when executing conditional code

3. Execute operations in separate kernels

Minimize register pressure and instruction cache usage

Avoid losing latency hiding capacity unnecessarily



16

Step 1: Remove the Loop

Keep a pool of paths alive all the time

E.g., one million paths

At each iteration, advance each of them by one 

segment

Cast rays, evaluate materials and lights, accumulate 

radiance, update throughput, run the roulette, etc.

If path terminates, generate a new one in its place

Ensure there’s always paths to work on

Similar to previous work

[e.g. Wald 2011, Van Antwerpen 2011, etc.]



17

Pros and Cons

+ Variable path length is not an issue anymore
As previously noted

+ Allows further optimizations
Collecting requests in operation-specific queues and scheduling 

them individually

This is the big one! Really hard to do in the megakernel approach

– Path state must reside in memory
A simple loop-based method can keep it in registers

Not as bad as it sounds if we use a good memory layout (SOA)

– Less “natural” to implement
But only until you get used to it

– Doesn’t buy you much performance alone



18

Step 2: Per-Operation Queues

Allocate a queue for each primitive operation request

Extension ray casts

Shadow ray casts

New path generation

Material evaluations

With separate queues for individual materials

Place requests compactly (i.e., no gaps) into queues

When executing, use one thread per request

Every thread will have an item to work on

Every thread will be doing the same thing, so there’s very 

little execution divergence!



19

Step 3: Individual Kernels for Each 

Operation

We already have well-optimized kernels for ray casts 

from previous research

Now we can use them directly

Optimized for low register count and high perf

Let each material have its own kernel

Some are simple and need few registers

Combining these into one kernel is sometimes a good idea

Some are complex and need many registers

Smaller code  Won’t overrun instruction caches



20

Implementation



21

Schematic

Logic

New Path Material 1 Material 2

Shadow Ray CastExt Ray Cast

Always operates on

all paths in pool

Each kernel has its

own queue

Each type of ray has

its own queue



22

The Logic Kernel

Does not need a queue, operates on all paths

Does “everything except rays and materials”

If shadow ray was unblocked, add light contribution

Find material and/or light source that ext ray hits

Apply Russian roulette if limit depth exceeded

If path terminated, accumulate to image

Apply depth-dependent extinction for translucent 

materials

Generate light sample by sampling light sources

Place path in proper queue according to material at hit

Or in “new path” queue if path terminated

Logic



23

New Path Kernel

Generate a new image-space sample

Based on a global path index

Generate camera ray

Place it into extension ray queue

Initialize path state

Init radiance, throughput, pixel position, etc.

intialize low-discrepancy sequence for the path, used 

when generating random numbers in samplers

New Path



24

Material nMaterial Kernels

Generate incoming direction

Evaluate light contribution based on light sample 

generated in the logic kernel

Even though we haven’t cast the shadow ray yet

Get the probability of acquiring the light sample from 

the sampling of incoming direction

Needed for MIS weights

By evaluating all of these in one go, we can discard 

the BSDF stack immediately afterwards

Generate extension ray and potential shadow ray

Place in respective queues



25

Ext Ray CastRay Cast Kernels

Extension rays

Find first intersection against scene geometry

Utilize optimized kernels from previous research

Store hit data into path state

Shadow rays

We only need to know if the shadow ray is blocked or not

Cheaper than finding the first intersection

Shadow Ray Cast



26

Results



27

Test Scenes and Performance

Carpaint City Conference

Note: Megakernel has path regeneration



28

Execution Time Breakdown

The most important takeaway: Ray casts are not the 

only expensive part!

Optimizations yield diminishing returns already

(times in milliseconds / 1M path segments)



29

Conclusions

Path tracing can be reorganized to suit GPUs better

Bonus: Also works in practice

Going to the future, there is no limit on the number and 

complexity of materials

Divergence will only get worse

Megakernels will only get bigger

 The proposed approach becomes even more appealing

Time to look beyond accelerating ray casts?



30

Future Work

Look at other rendering algorithms

Bidir path tracing, MLT, etc.

There is already good work in this direction

[Van Antwerpen, Davidovič et al.]

Should add complex materials in the mix!

What to do about gigantic textures?

Run materials that have their textures resident while 

transferring missing textures on the GPU simultaneously?

Put paths “on hold” while their textures are being loaded, 

and let other paths continue?

Always run everything you can, try to make everything else 

runnable at the same time by async transfers?



31

Thanks!

Questions


