Out-of-Core Proximity Computation
for Particle-based Fluid Simulation

HPG 2014
Presenter:

Duksu Kim Myung-Bae Son
Young J. Kim Jeong-Mo Hong Sung-Eui Yoon

Particle-based Fluid Simulation

Current Frame : 1

Last Frame : 509

Grid Scale : 256/256/256
of Particle : 586,921

of threads : 24

Memory Usage : 14,198 M8

One Frame Time: 7.50 s
»Simula. Time: 7.35 s
-Display Time: 0.03 s
Write Time: 0.12

Total Time: 7.50
-Simula. Time: 7.35 s
-Display Time: 0.03
-Nrite Time: 0.12

Camera Mode : Mouse
Capture Image : On
Capture Movie : On

Motivation

* To meet the higher realism, a large
number of particles are required

— Tens of millions particles

* In-core algorithm (previous work)
— Manage all data in GPU’s video memory

— Can handle up to 5 M particles with 1 GB
memory for particle-based fluid simulation

« Recent commodity GPUs have 1 ~ 3
GB memories (up to 12 GB)

Contributions

* Propose out-of-core methods that
utilize heterogeneous computing
resources and process neighbor search
for a large number of particles

* Propose a memory footprint
estimation method to identify a
maximal work unit for efficient out-of-
core processing

Result

NVIDIA mapped memory Tech.
- Map CPU memory space
into GPU memory address space

/\Map-GPU

25 Ne———" \
20 /

5 W’(J \rrr oo
0
\]

RIS S ROIC IR PP

Millons particles

Up to 65.6 M Particles - Two hexa-core CPUs (192 GB Mem.)
Maximum data size: 13 GB - One GPU (3 GB Mem.)

Particle-based Fluid Simulation

Neighbor search }

¥

[Compute force }

¥

Move particles]

Particle-based Fluid Simulation

Neighbor search] Performance bottleneck

- Takes 60~80% of simulation computation time

[4 L4
Compute force

.
.
L
3 s
o -
ol -
- -
a 0
. .
H "
- .
H "
- L
. v
.
. Q
. Q
. Q
. g
* : *
| *, o
. “’ :
b4 .
.. A
o, .

Move particles]

® ®
e-Nearest Neighbor (e-NN)

Preliminary: Grid-based €-NN

Ld
o, |®
Ld o °
° -
> o 0|
® P Y) -
7 e k 3
l ° | e .
$ o |0
<)V ®e SN
° -
° s .
P
- ® ¢ -

Preliminary: Grid-based €-NN

In-Core Algorithm
(Data<Video Memory)

ﬁ/lain memory (CPU sidﬁ (G PU \
4)

- Grid data
Video memory

- Particle data

i m

Main memory is enough
10

- can equip up to 4 TB

Data > Video Memory
A/Iain memory (CPU Sldﬂ / GPU \

.)

- Grid data
- Particle data

u

J

Video memory

Out-of-Core Algorithm

A/Iain memory (CPU sidﬂ (G PU \
4)
- Sub- ri ock) data

Video memory

_),
| =
_ Y m

Boundary Region

« Required data in adjacent blocks
* Inefficient to handle in an out-of-core

manhner

Boundary Region

« Required data in adjacent blocks

 Inefficient to handle in an out-of-core
manner

* Multi-core CPUs handle the boundary
region
— CPU (main) memory contain all required
data

— Ratio of boundary regions is usually much
smaller than inner regions

14

How to Divide the Grid ?

How to Divide the Grid ?

« Goal: Find the largest
block that fits to the GPU

memory

— Improve parallel computing

efficiency

 Process a large number of

particles at once

« Minimize data transfer

overhead

— Reduce the boundary region

 As the ratio of boundary
region Is increased, the

workload of CPU is increased
16

Required Memory Size
for processing a block, B

of neighbor particles

of par’,c/|cles n B for the particle i (p;)

Pi
7 A
% Pi eEB
Data size Data size

for storing a particle for storing a neighbor info.

17

Hierarchical Work Distribution

- # of particles in the block
- # of neighbors in the block

Workload tree

S(B) < GPU memory

18

Chicken-and-Egg Problem

of neighbor particles

; — C
of partf,'des in B for the particle J, p;

4

Data size Data size
for storing a particle for storing a neighbor info.

19

Chicken-and-Egg Problem

S(B) =ngS,+ S, Z n,
p;EB R

Our approach:
Estimation the number of neighbors for particles

20

Problem Formulation

« Assumption
— Particles are uniformly distributed in a cell

* |dea

— For a particle, the number of neighbors in a
cell Is proportional to the overlap volume
between the search sphere and the cell
weighted by the number of particles in the
cell

S(p,g)

"o

2

21

Expected Number of Neighbors
of a particle p located at (x, y, z)

§0verlap(5(p v ,8),6-)
E(px,y,z) : zn(Cl) >l< V(Ci-§yz i

- C; : cells of p,, , and its adjacency cells
- n(C;) : the number of particles in the cell
- Overlap(S(Pyyz €), C;) : overlap volume between them

- V(C;) : volume of the cell

22

Problem Formulation

- Compute E(p,,) for each particle
takes high computational overhead

* Instead, (approximation)

— Compute the average E(p,,) for particles
In a cell

— Use the value for all particles in the cell

23

The Average, Expected Number of
Neighbors of particles in a cell C,

Expenswe to compute at runtlme

- L is the length of a cell along each dimension
- Dxyz IS @ particle positioned at (x, y, z) on a local coordinate space in C,

24

The Average, Expected Number of
Neighbors of particles in a cell C,

1 L ~l -l
E\(C,) = E dxdyd
(q) V(Cq) *JO JO j;) (px,y,z) Xayaz

1 D(C,, C;)
- v(c,) " zin(Ci) 70D

Ll (1
D(Cq,Cl-) = Jo fo LOverlap(S(Px,y,Z, e), Cl-)dx dy dz

The Average, Expected Number of
Neighbors of particles in a cell C,

o Pre-compute D(Cq' Cl)

— The value depends on the ratio between I
and ¢ values

— [and ¢ are not frequently changed by user

— Use the Monte-Carlo method with many
samples (e.g., 1T M)

* Use look-up table at runtime

Ll (1
D(Cq,Cl-)= JOfofo0verlap(S(Px,y,Z,e),Cl-)dxdydz

26

Validation

100 100
Epxected # : - Epxected #

80 - (1 = 2¢) oS 80 (I=¢)

60 YA 60

40 - il 40

20 el 20
Observed #

60 80 100 | ﬁ ﬁ 4(60 80 100
e Correlation = 0.97
 Root Mean Square Error (RMSE) = 3.7

Chiclken—and-EggProblem

Expected number
of neighbors

/
/
/

S(B) — nBSp + Sn 2 n,pi
p;EB

28

Chiclken—and-EggProblem

Expected number
of neighbors

/
/
/
/

S(B) — nBSp + Sn 2 n,pi + SAux
Pi€B g

/
4

/
Auxiliary space to cover
the estimation error

SAux = 3.7 x nBSn
A
RMSE

29

Results

* Testing Environment
—Two hexa-core CPUs
—192 GB main memory (CPU side)

—One GPU (GeForce GTX 780) with 3 GB
video memory

30

Results

NVIDIA mapped memory Tech
- Map CPU memory space
into GPU memory address space

/\Map-GPU

25 Ne——— \
20 /

5 W’(J o i
0
\]

RIS S ROIC IR PP

Millons particles

Up to 65.6 M Particles
Maximum data size: 13 GB

31

Ours —Map-GPU

0 100 200 300 400 Frame #

%@,A

> Q

Millons particles

Results

Up to 26 X
Map-GPU >Our method

Up to 51 X , 12 CPU cores

A CPU core

+0One GPU
Up to 8.& Ao 6.3 X
12 CPU cores

33

Conclusion

* Proposed an out-of-core e-NN
algorithm for particle-based fluid
simulation
— Utilize heterogeneous computing resources
— Utilize GPUs in out-of-core manner

— Propose hierarchical work distribution
method

34

Conclusion

* Proposed an out-of-core e-NN
algorithm for particle-based fluid
simulation

* Presented a novel, memory estimation
method

— Based on expected number of neighbors

35

Conclusion

Proposed an out-of-core e-NN
algorithm for particle-based fluid
simulation

Presented a novel, memory estimation
method

Handled a large number of particles

Achieved much higher performance
compared with a naive OOC-GPU
approach

36

Future Work

« Extend to support multi-GPUs

* Improve the parallelization efficiency
by employing an optimization-based
approach

- Extend to other applications

37

Thanks!

Any questions?

(bluekdct@gmail.com)

Project homepage:
http://sglab.kaist.ac.kr/OOCNNS

- Benchmark scenes are available in the homepage
- Source code will be available in the homepage

38

Benefits of Our Memory
Estimation Model

 Fixed space VS Ours

39

Benefits of Hierarchical
Workload Distribution

 Larger block size shows a better
performance

— E.g., using 323 and 643 block sizes takes 22%
and 30% less processing time in GPU than
using 163 blocks on average

40

Benefits of Hierarchical
Workload Distribution

« But, the maximal block size varies
depending on the benchmarks and
region of the scene

« Compared manually set fixed block
size based on our estimation model,
hierarchical approaches shows 33%
higher performance on average

41

