

A Day in the Life of 
a Facebook Photo

Brian Cabral
Director of Engineering

2 Billion
photos shared daily

daily users

968 million

100s of different devices

1,000s of locales/connection types

Massive distributed system

Requiring on-the-fly
resizing and transcoding

Basic architecture
Photo Upload

Everstore

PHP
Front-end

HTTP post

Thrift

HTTP post

Resize
&

Transcode

Resizing

On upload we target 960 or 2048
• function of input size & expected output resolutions

Custom resizing reconstruction filter
• Type of separable Lanzcos filter
• Designed for speed & quality

Resizing re-transcode

Transcoding

We use PJPEG with custom tables  
 

Extensive internal analysis showed that for
most images PJPEG was hard to beat

Everstore

N
FS

 F
il

er

C
h

ea
p

 F
S

H
ay

st
ac

k

H
D

FS
- 

B
as

ed

Ex
te

rn
al
 

Ve
n

d
o

r?

Mechanic 
+Controller

Photo LB

Photo upload

Video LB

Video upload

Video encode

Verified 
downloads

Akamai 
CDN

Download LB

Edge Cache

Origin Cache

Image 
processing 

(FB Algo)Router

Photo product 
(on www)

URL Generation

Everstore API

Basic architecture
Photo Download

Origin 
Cache

Edge

Resize & 
Transcode

FCDN

Everstore

HTTP get Thrift

CDN Caching
Haystack:

Distributed
File Store

Proxygen:
Layer 7

Balancer

BigCache:
RAM + Flash

Cache
Akamai

Facebook Data
Centers

Edge Network
dozens of PoPs
around the world

Proxygen:
Layer 7

Balancer

BigCache:
RAM + Flash

Cache

System design & development

Continuous design & development 
 
Controlled rollouts 
 
Extensive instrumentation 

• Big spec, design, … waterfall
• Extensive QA testing

Open questions

Can we do better
than PJEG?

Can we eliminate
intermediate
processing?

Is there a way to
arbitrarily deliver

different sizes and
quality?

Can we use image
specific caching

schemes?

Can we use ML to
dynamically load

adapt?How do GPUs and
CPUs aggregate in the

“large?”

