High-Performance Delaunay Triangulation for Many-Core Computers

V. Fuetterling and C. Lojewski

Contact: valentin.fuetterling@itwm.fhg.de
Basic property of the Delaunay triangulation (DT)

- No other points inside the circumcircle of a triangle
Applications for the DT

- point location
- path finding
- image processing
- mesh generation
- etc...
Contribution of the talk

• DT implementation for 2D point sets
 – Multi-threaded
 – High single-threaded performance
 – Big data sets

Results 40-50x faster than previous implementations
Problem

DIFFICULTIES FOR A PARALLEL DT IMPLEMENTATION
Looking at previous implementations
CGAL and Triangle

<table>
<thead>
<tr>
<th>CGAL</th>
<th>Triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Point-insertion</td>
<td>• Divide-and-conquer (Dwyer’s algorithm)</td>
</tr>
</tbody>
</table>

(www.cgal.org) (www.cs.cmu.edu/~quake/triangle.html)
CGAL algorithm
Triangle algorithm
Triangle algorithm
Triangle algorithm
Triangle algorithm
Triangle algorithm
Triangle algorithm
Difficulties with parallelization

- **CGAL:**
 - Multiple threads need to read/modify a shared data structure

- **Triangle:**
 - D&C: Limited parallelism at the start
 - Devisive sorting algorithm, problematic for scalability (compare top-down BVH construction)
Difficulties with parallelization

- **CGAL:**
 - Multiple threads need to read/modify a shared data structure

- **Triangle:**
 - D&C: Limited parallelism at the start
 - Devisive sorting algorithm, problematic for scalability (compare top-down BVH construction)
Our solution

THE LINEAR QUAD-TREE
(WITH A TWIST)
Linear Quad-tree

• Concept known from BVH construction algorithms (linear oct-tree):
 – HLBVH [Pantaleoni, Luebke, 2010]
 – AAC [Gu, He, Fatahaliam, Blelloch, 2013]

• Basic idea:
 Morton codes + (Radix) sort -> memory layout of points corresponds to depth-first traversal of quad-tree
Linear Quad-tree

1. Define grid

2. Compute Morton codes

3. (Radix) sort

Implicit Quad-tree

Memory
Linear Quad-tree

1. Define grid
2. Compute Morton codes
3. (Radix) sort

Implicit Quad-tree
Memory
Linear Quad-tree

1. Define grid

2. Compute Morton codes

3. (Radix) sort

Implicit Quad-tree

Memory
Twist: Morton codes directly from floating-point representation
Quad-tree structure generated by floating-point Morton codes (LFQT)
Quad-tree structure generated by floating-point Morton codes (LFQT)
Advantages of LFQT compared to regular linear Quad-tree

- **Bijectivity**: code \leftrightarrow value
 - ‘infinite’ resolution, i.e. one exclusive grid cell for every possible point
 - Reduced memory footprint

- One fixed grid for every possible data set

- Rigorous numerical structure, used for adaptive precision arithmetic -> see paper
The algorithm

AN EFFICIENT, PARALLEL DT IMPLEMENTATION
Algorithm phases

Input Points → Morton Code → Radix Sort → Top Subdivide (global) → Subdivide / Merge (local) → Top Merge (global) → DT

- Full parallelism
- Limited parallelism
- Global synchronization
Algorithm phases

Input Points => Morton Code => Radix Sort => Top Subdivide (global) => Subdivide / Merge (local) => Top Merge (global) => Done

- Full parallelism
- Limited parallelism
- Global synchronization
Subdivide method

Input: Array of points from $lidx$ to $ridx$

```plaintext
Algorithm 1 Subdivision of the floating point quad-tree.

Subdivide($lidx, ridx$)

1: if points[$lidx$] is equal to points[$ridx - 1$] then
2:     Decode points $lidx$ to $ridx - 1$
3:     return Partition with single point $lidx$
4: else if $ridx - lidx$ is equal to 2 then
5:     Decode points $lidx$ and $lidx + 1$
6:     return Partition with points $lidx$ and $lidx + 1$
7: else
8:     $l ← lidx$
9:     $r ← ridx - 1$
10:    $level ← BSR( points[l] ⊕ points[r] )$
11:    $mask ←$ Shift left 1 by $level$
12:    while not (points[$l + 1$] & $mask$) do
13:        $m ← (l + r)/2$
14:        if points[$m$] & $mask$ then
15:            $r ← m$
16:        else
17:            $l ← m$
18:        end if
19:    end while
20:    $left ←$ Subdivide($lidx, l + 1$)
21:    $right ←$ Subdivide($l + 1, ridx$)
22:    return Merge($left, right$)
23: end if
```
Subdivide method

Algorithm 1 Subdivision of the floating point quad-tree.
Subdivide(lidx, ridx)

1: if points[lidx] is equal to points[ridx - 1] then
2: Decode points lidx to ridx - 1
3: return Partition with single point lidx
4: else if ridx - lidx is equal to 2 then
5: Decode points lidx and lidx + 1
6: return Partition with points lidx and lidx + 1
7: else
8: l ← lidx
9: r ← ridx - 1
10: level ← BSR(points[l] ⊕ points[r])
11: mask ← Shift left 1 by level
12: while not (points[l + 1] & mask) do
13: m ← (l + r) / 2
14: if points[m] & mask then
15: r ← m
16: else
17: l ← m
18: end if
19: end while
20: left ← Subdivide(lidx, l + 1)
21: right ← Subdivide(l + 1, ridx)
22: return Merge(left, right)
23: end if

Single point or only degenerate points left?
Subdivide method

Algorithm 1 Subdivision of the floating point quad-tree.

Subdivide(lidx, ridx)

1: if points[lidx] is equal to points[ridx − 1] then
2: Decode points idx to ridx − 1
3: return Partition with single point lidx

4: else if ridx − lidx is equal to 2 then
5: Decode points lidx and lidx + 1
6: return Partition with points lidx and lidx + 1

7: else
8: l ← lidx
9: r ← ridx − 1
10: level ← BSR(points[l] ⊕ points[r])
11: mask ← Shift left 1 by level
12: while not (points[l + 1] & mask) do
13: m ← (l + r)/2
14: if points[m] & mask then
15: r ← m
16: else
17: l ← m
18: end if
19: end while
20: left ← Subdivide(lidx, l + 1)
21: right ← Subdivide(l + 1, ridx)
22: return Merge(left, right)
23: end if

Two points left?
Subdivide method

Algorithm 1 Subdivision of the floating point quad-tree.

Subdivide(lidx, ridx)
1: if points[lidx] is equal to points[ridx - 1] then
2: Decode points lidx to ridx - 1
3: return Partition with single point lidx
4: else if ridx - lidx is equal to 2 then
5: Decode points lidx and lidx + 1
6: return Partition with points lidx and lidx + 1
7: else
8: l ← lidx
9: r ← ridx - 1
10: level ← BSR(points[l] ⊕ points[r])
11: mask ← Shift left 1 by level
12: while not (points[l + 1] & mask) do
13: m ← (l + r) / 2
14: if points[m] & mask then
15: r ← m
16: else
17: l ← m
18: end if
19: end while
20: left ← Subdivide(lidx, l + 1)
21: right ← Subdivide(l + 1, ridx)
22: return Merge(left, right)
23: end if

Find most significant bit which is different
Subdivide method

Algorithm 1 Subdivision of the floating point quad-tree.

Subdivide($lidx$, $ridx$)

1: if points[$lidx$] is equal to points[$ridx$ - 1] then
2: Decode points $lidx$ to $ridx$ - 1
3: return Partition with single point $lidx$
4: else if $ridx$ - $lidx$ is equal to 2 then
5: Decode points $lidx$ and $lidx$ + 1
6: return Partition with points $lidx$ and $lidx$ + 1
7: else
8: l ← $lidx$
9: r ← $ridx$ - 1
10: level ← BSR(points[l] ⊕ points[r])
11: mask ← Shift left 1 by level
12: while not (points[l + 1] & mask) do
13: m ← (l + r) / 2
14: if points[m] & mask then
15: r ← m
16: else
17: l ← m
18: end if
19: end while
20: $left$ ← Subdivide($lidx$, l + 1)
21: $right$ ← Subdivide(l + 1, $ridx$)
22: return Merge($left$, $right$)
23: end if

Find position where the bit changes
Subdivide method

Algorithm 1 Subdivision of the floating point quad-tree.

Subdivide(ldx, ridx)
 1: if points[ldx] is equal to points[ridx − 1] then
 2: Decode points lidx to ridx − 1
 3: return Partition with single point lidx
 4: else if ridx − lidx is equal to 2 then
 5: Decode points lidx and lidx + 1
 6: return Partition with points lidx and lidx + 1
 7: else
 8: l ← lidx
 9: r ← ridx − 1
 10: level ← BSR(points[l] ⊕ points[r])
 11: mask ← Shift left 1 by level
 12: while not (points[l + 1] & mask) do
 13: m ← (l + r)/2
 14: if points[m] & mask then
 15: r ← m
 16: else
 17: l ← m
 18: end if
 19: end while
 20: left ← Subdivide(ldx, l + 1)
 21: right ← Subdivide(l + 1, ridx)
 22: return Merge(left, right)
 23: end if

Recurse subdivision and merge triangulations
Evaluation

HOW DOES THE LFQT IMPACT DT PERFORMANCE?
Experimental Setup

• Dual-socket Intel Xeon E5-2670 @ 3.0 GHz
 – 16 cores / 32 threads, 64 GB DDR3
• fqDel (our implementation)
• Triangle 1.6
• CGAL 4.3
• Random point distributions (fixed seed)
 – Uniform, Cluster, Grid, Circle and Spiral
Single-threaded performance: fqDel vs. CGAL vs. Triangle

Milliseconds (ms)

fqDel	CGAL	Triangle
Uniform Cluster | | |
Circle Spiral | | |
Grid | | |

100k
Single-threaded performance: fqDel vs. CGAL vs. Triangle

- **Milliseconds (ms)**
 - Uniform
 - Circle
 - Grid

- **Seconds (s)**
 - Uniform
 - Circle
 - Grid

- **100k**
 - fqDel
 - CGAL
 - Triangle

- **1M**
 - Cluster
 - Spiral

- **10M**
 - Uniform
 - Circle
 - Grid

- **100M**
 - Cluster
 - Spiral
fqDel performance scaling with input size
Multi-threading:
fqDel performance scaling with thread count
Run-time distribution:
How much time is spent in each part of fqDel
Parallel GPU alternatives (CUDA)

- **GPU-DT** [Qi, Cao, Tan ’12]
 - Digital Voronoi diagram + edge flipping

- **gDel2D** [Cao, Nanjappa, Gao, Tan ’14]
 - Parallel point-insertion

Benchmarks with GeForce GTX 580

Note: both use **double-precision**
fqDel vs. GPU alternatives
fqDel vs. GPU alternatives

![Chart comparing fqDel and GPU alternatives]

- fqDel
- gDel2D-Titan
- gDel2D
- GPU-DT

Milliseconds (ms) vs. Seconds (s) for different numbers of million points.
Summary

- Efficient DT implementation for 2D point sets
 - Results 40-50x faster than previous CPU implementations
 - Considerably faster than GPU implementations
Thank you!