### Space-Time Hierarchical Occlusion Culling for Micropolygon Rendering with Motion Blur

Solomon Boulos, Edward Luong, Kayvon Fatahalian, Henry Moreton, Pat Hanrahan HPG 2010

# High interest in Motion Blur

- [Akenine-Moller et al. EGSR 2007]
- [Fatahalian et al. HPG 2009]
- Three more papers here

• This paper: occlusion with motion blur



#### [Luxo Jr., Pixar 1986]





### [Red's Dream, Pixar 1987]





[Alice in Wonderland, Disney 2010]





[Alice in Wonderland, Disney 2010]













## Contributions

- culling with motion blur
- to optimize the cost/benefit tradeoff

• TZ-Pyramid: Data structure for efficient hierarchical occlusion

• Analysis: where to use the tz-pyramid in a micropolygon pipeline

Background (Occlusion culling without motion blur)

# Image Space Z-pyramid



represents the farthest z for a square region of the screen.



Figure 3.4 A scene and its corresponding z-pyramid. The finest level of the pyramid is the ordinary z-buffer. At all other levels, each z sample is the farthest z from the observer in the corresponding  $2 \times 2$  window of the next finer level. Every entry in the pyramid therefore

### [Greene et al. 1993]





#### Multi-sample



zFar



#### Multi-sample





#### Level I





#### Multi-sample



#### Level I







#### Multi-sample



#### Level I







#### Multi-sample



#### Level I







#### Multi-sample



#### Level I





# Z-pyramid Culling









# Z-pyramid Culling









# Z-pyramid Culling









# Z-pyramid as Acceleration Structure









### **Optimization:** Traversal Initialization







Motion Blur

## Switch to Space-Time







# Switch to Space-Time







# Idea 1: Reuse the current z-pyramid



#### Multi-sample



#### Level I

Level 2

#### zFar



# Idea 1: Reuse the current z-pyramid



#### Multi-sample



#### Level I





## Problem: Too Conservative



## Problem: Too Conservative





#### Solid Occluder

# Idea 2: z-pyramid per time

τ<sub>0</sub>

**t**<sub>3</sub>

#### Multi-sample

Level I





4

Level 2









**t**<sub>3</sub>

**t**<sub>3</sub>

zNear



## TZ-Slice: More effective



### TZ-Slice: More expensive



### TZ-Slice: More expensive




## "Moving" depends on scale



## "Moving" depends on scale



## "Moving" depends on scale



----

### Multi-sample

**t**<sub>0</sub> **t**<sub>3</sub> **t**<sub>2</sub> t<sub>1</sub>

Level I

| t <sub>o</sub> | t <sub>o</sub> | t <sub>1</sub> | t <sub>1</sub> |
|----------------|----------------|----------------|----------------|
| t <sub>o</sub> | t <sub>o</sub> | t <sub>1</sub> | t <sub>1</sub> |

### TZ-Pyramid







#### Time Level I







### Time Level I



#### Time Level 2

| [t <sub>0</sub> ,t <sub>1</sub> ] | [t <sub>o</sub> ,t <sub>1</sub> ] |
|-----------------------------------|-----------------------------------|
| [t <sub>0</sub> ,t <sub>1</sub> ] | [t <sub>0</sub> ,t <sub>1</sub> ] |



| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |
|-----------------------------------|-----------------------------------|
| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |



#### Time Level I



 $[t_{0'}, t_{1}]$  $[t_{0'}, t_{1}]$ 

 $[t_{0'}, t_{1}]$ 

 $[t_{0'}, t_{1}]$ 

### Time Level 2

### Time Level 3

 $[t_{0'}, t_{3}]$  $[t_{0'}, t_{3}]$  $[t_{0'}, t_{3}]$  $[t_{0'}, t_{3}]$ 





| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |
|-----------------------------------|-----------------------------------|
| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |







### Time Level I





**t**<sub>1</sub>

### Time Level I



#### Time Level 2









### Time Level I



#### Time Level 2



#### Time Level 3





 $[t_{0}, t_{3}]$ 



### Time Level I



### Time Level 2

| [t <sub>0</sub> ,t <sub>1</sub> ] | [t <sub>0</sub> ,t <sub>1</sub> ] |
|-----------------------------------|-----------------------------------|
| [t <sub>0</sub> ,t <sub>1</sub> ] | [t <sub>0</sub> ,t <sub>1</sub> ] |

#### Time Level 3

 $\begin{bmatrix} t_{0}, t_{3} \end{bmatrix} \begin{bmatrix} t_{0}, t_{3} \end{bmatrix}$  $\begin{bmatrix} t_{0}, t_{3} \end{bmatrix} \begin{bmatrix} t_{0}, t_{3} \end{bmatrix}$ 



| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |
|-----------------------------------|-----------------------------------|
| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |



#### Time Level I



 $[t_0, t_1]$   $[t_0, t_1]$ 

 $[t_{0'}, t_{1}]$ 

 $[t_{0'}, t_{1}]$ 

### Time Level 2

### Time Level 3

 $\begin{bmatrix} t_{0}, t_{3} \end{bmatrix} \begin{bmatrix} t_{0}, t_{3} \end{bmatrix}$  $\begin{bmatrix} t_{0}, t_{3} \end{bmatrix} \begin{bmatrix} t_{0}, t_{3} \end{bmatrix}$ 



| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |
|-----------------------------------|-----------------------------------|
| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |



#### Time Level I

| t <sub>o</sub> | t <sub>o</sub> | t <sub>1</sub> | t <sub>1</sub> |
|----------------|----------------|----------------|----------------|
| t <sub>o</sub> | t <sub>o</sub> | t <sub>1</sub> | t <sub>1</sub> |

#### Time Level 2

| [t <sub>0</sub> ,t <sub>1</sub> ] | [t <sub>0</sub> ,t <sub>1</sub> ] |
|-----------------------------------|-----------------------------------|
| [t <sub>0</sub> ,t <sub>1</sub> ] | [t <sub>0</sub> ,t <sub>1</sub> ] |

#### Time Level 3

 $[t_{0'}, t_{3}]$  $[t_{0}, t_{3}]$  $[t_{0'}t_{3}]$  $[t_0, t_3]$ 



| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |
|-----------------------------------|-----------------------------------|
| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |



#### Time Level I

| t <sub>o</sub> | t <sub>o</sub> | t <sub>1</sub> | t <sub>1</sub> |
|----------------|----------------|----------------|----------------|
| t <sub>o</sub> | t <sub>o</sub> | t <sub>1</sub> | t <sub>1</sub> |

#### Time Level 2

| [t <sub>0</sub> ,t <sub>1</sub> ] | [t <sub>0</sub> ,t <sub>1</sub> ] |
|-----------------------------------|-----------------------------------|
| [t <sub>0</sub> ,t <sub>1</sub> ] | [t <sub>0</sub> ,t <sub>1</sub> ] |

#### Time Level 3

 $[t_{0}, t_{3}]$ 

 $[t_{0'}t_{3}]$ 



| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |
|-----------------------------------|-----------------------------------|
| [t <sub>2</sub> ,t <sub>3</sub> ] | [t <sub>2</sub> ,t <sub>3</sub> ] |

 $\begin{bmatrix} t_{0}, t_{3} \end{bmatrix}$   $\begin{bmatrix} t_{0}, t_{3} \end{bmatrix}$ 



#### Time Level I

#### Time Level 2



to

#### Time Level 3





 $[t_{0}, t_{3}]$ 



#### Time Level I

#### Time Level 2



to

#### Time Level 3





[t<sub>0</sub>,t<sub>3</sub>]



#### Time Level I

#### Time Level 2



to

#### Time Level 3





[t<sub>0</sub>,t<sub>3</sub>]



#### Time Level I

#### Time Level 2



to

#### Time Level 3





 $[t_{0'}, t_{3}]$ 













|  | [t <sub>0</sub> ,t <sub>3</sub> ] | [t <sub>0</sub> ,t <sub>3</sub> ] |  |  |
|--|-----------------------------------|-----------------------------------|--|--|
|  | [t <sub>0</sub> ,t <sub>3</sub> ] | [t <sub>o</sub> ,t <sub>3</sub> ] |  |  |





















# STICKS

### Evaluation

ARMY ZINKIA Rendered at 1080p, 16 samples per pixel, 2x2 pixel interleave

### **Evaluation: Metrics of Interest**

• Diced vertices

Shaded vertices

• Depth comparisons

Coarse: Inner nodes
Fine: Multi-sample z

### When to Cull



## No Occlusion Culling



### Just prior to shading



## Just prior to dicing



## Both before dicing and shading







### **Resolution Tradeoff: Prefer Temporal**



### TZ-Pyramid: More efficient



### Recap

- TZ-Pyramid: extension of z-pyramid for motion blur.
  - More effective than reusing z-pyramid
  - More efficient than TZ-slice
  - Manageable footprint
- Culling at all stages works best
  - Pays for itself
  - Culling earlier increases benefit while reducing cost

## Next Steps

- Traditional optimizations
  - Compression, Resolution Tradeoffs, Fixed-Function
- More applications
- Future pipeline integration
## Thanks

- National Science Foundation Graduate Research Fellowship
- Intel Larrabee Research Grant
- Stanford Pervasive Parallelism Laboratory
  - Oracle, NVIDIA, IBM, NEC, AMD, Intel

- Kurt Akeley, Margarita Bratkova, James Hegarty, Mike Houston, Bill Mark, Jonathan Ragan-Kelley.
- Zinkia Entertainment, S.A.