
Fast traversal of incoherent rays 

Tracing rays through an octree with neighbour links in the leaf nodes 
is a competitive alternative to single-ray traversal. We batch rays in 
the nodes, and advance rays in saturated nodes. 

 

 
 

Octree traversal with neighbour links: rays are batched until a 
 node is saturated. Rays of various depths are traced together.  

 
Using a shallow octree, rays batched in leafs can be traversed 
through an MBVH. Traversal schemes for this data structure benefit 
significantly from the improved coherency of the rays in the leafs. 

 

Ray depth 0 1 2 3 4 

Mono traversal 2009 1308 1167 1105 1083 

Partition traversal 7622 1903 1194 1022 950 

Range traversal 11376 1332 721 593 541 

Octree traversal 2126 1477 1293 1226 1232 

MBVH/RS 4134 2131 1639 1453 1386 

Hybrid 3002 2352 2005 1889 1882 
 

    Tracing various ray depths using various traversal algorithms 

 

 

 

 
 

 

 

 

 

 

 
 

 

Jacco Bikker, NHTV University Breda   
Dietger van Antwerpen, Technical University Delft 

 
 

Brigade is an interactive path tracer for games: its purpose is 
to facilitate the development of ‘proof of concept’ path traced 
interactive applications on consumer hardware. A hybrid 
architecture employs both the CPU and the GPU in a single 
system. The workload is dynamically scaled between the CPU 
cores and the GPU, keeping each fully occupied. 
 

Dynamic scenes, multiple acceleration structures 

The top-level scene BVH is constructed from smaller BVHs for each scene 
graph node. These nodes in turn are updated per frame using refitting or 
rebuilding, if needed. Also per frame, the top-level BVH is converted to an 
MBVH for rapid divergent ray traversal, and to a GPU BVH for GPU 
rendering. During rendering, the BVH is traversed using packet traversal. 
Divergent rays are traced using MBVH/RS. 

 

Heterogenous rendering 

The CUDA tracer implements a full path tracer: Its input data are the 
vertices of the view frustum, its output are rendered tiles of pixels. The 
CPU tracer implements the same interface. The CPU and GPU systems 
can be extended with others that implement the same interface, such as a 
network renderer, or an OpenCL module. 
 

Work is divided over the rendering modules using a balancing system, that 
adjust the workload assigned to each module based on the amount of time 
spent in the previous frame. This way, no communication is necessary 
during frame rendering. 
 

For games 

As the successor to the Arauna real-time ray tracer, Brigade will be used 
by IGAD students to develop games in our GameLab. This introduces 
students (both programmers and visual artists) to future graphics 
technology, and thus helps introduce this technology into the game 
industry. As of today, Brigade is open source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Visualizing light transport with discs. Shown here are 1 and 8 spp using discs, versus 1 and 64 spp using direct plotting. 

 

Post processing 

The output of the ray tracer can be post-processed by plotting the transported light as discs (with floating point 
coordinates) rather than pixels. The radius of each disc depends on the distance to the focal plane. Using this 
approach, out-of-focus image regions converge quickly. When path probability is also allowed to influence disc 
radius, caustic paths too effect a greater area. This approach works well in the context of a path tracer, as it is 
not screen space based. 
 

 
 

Models by IGAD students Nils Ruisch & Gabrian van Houdt. Additional coding by Jeroen van Schijndel. Maya exporter 
by Eric den Boer. Maya exporter, source files and poster art assets can be obtained from http://igad.nhtv.nl/~bikker. 

15/6/2010 

http://igad.nhtv.nl/~bikker

