
Parallel SAH k-D Tree
Construction

Byn Choi, Rakesh Komuravelli, Victor Lu,
Hyojin Sung, Robert L. Bocchino,

Sarita V. Adve, John C. Hart

Motivation
•  Real-time Dynamic Ray Tracing

–  Efficient rendering with the right spatial data structure
•  SAH-based k-D tree proven very effective

–  Dynamic content requires rebuilding tree every frame
⇒ Tree build becomes bottleneck in rendering pipeline

•  Prior parallelization efforts abandon SAH
–  Sacrifice tree quality, increase rendering time

Contributions
•  First to parallelize k-D tree construction with precise SAH

–  High quality AND high performance
•  Two parallel algorithms: Nested and In-place

–  Different performance/scalability characteristics
•  Up to 8x speedup on 32 cores

Straightforward || Construction
•  Top-down – Recursive subdivision
•  Divide-n-Conquer style

–  Recursive parallelism
–  Each node == a task

•  Problem
–  Not enough parallelism at top
–  More work per node at top
–  Serial for top nodes:

•  Benthin PhD, 2006
•  Popov et al. IRT 2006
•  Hunt et al. IRT 2006

4

....

....................

.....

k-D Tree Parallel Pattern

Subtrees built in parallel

Process triangles in
parallel

Every 18 months
the transition line
descends a level

..

Challenge: Compute
precise SAH here

Previous Approaches
Shevtsov et al. CGF 07
•  4-core CPU, LRB
•  Δ count median for

upper-tree nodes
Zhou et al. SA 08
•  Streaming GPU
•  Spatial median for

upper-tree nodes

As core counts increase,
median (non-SAH) constructions
degrade rendering performance

6

MedianSAH
transition depth
(# processors)

Calculating SAH
•  Prob. of hitting triangles ∝ surface area of bounding box
•  Largest number of triangles in least surface area
•  Need to find out…

–  AreaL, AreaR – Surface area

–  #L, #R – # of triangles

SAH ∝ #L*AreaL + #R*AreaR

NR = 3 NL = 3

“event”

•  Linear dependency between events
•  Events need to be sorted!

Seq. k-D Tree Construction

•  Recursive tree-building algorithm O(n log n)
•  Sorted list of events as input
•  3 Major phases within a node

–  FindBestPlane (41%)
–  ClassifyTriangles (4%)
–  FilterGeom (55%)

•  Parallelization
–  FindBestPlane

Linear dependence → Parallel Prefix
–  FilterGeom

Sorted output → Parallel Prefix

(Wald and Havran, 2006)

....

....................

.....

..

& Nested

Issues
•  Two extra full-scans introduced (Parallel Prefix)

–  FindBestPlane
–  FilterGeom

•  Data movement
–  Events moved from one container to another

•  ClassifyTriangles hard to parallelize
–  Arbitrary bit writes by multiple threads into a shared bit vector

•  Synchronization overhead
•  False-sharing

–  4% execution time == 25x maximum theoretical speedup

In-place Algorithm
•  Events are kept “in-place” – no need to preserve ordering

–  Eliminates FilterGeom phase
–  Does less work

•  Events responsible for tracking own membership(s)

•  Change of membership is an update, not a move/copy

Node
A

A

B

A B

In-place Algorithm
•  Iterative tree-building algorithm
•  3 Major phases within an iteration

–  FindBestPlane (85%)
–  Newgen (0.04%)
–  ClassifyTriangle (14%)

•  Fill phase (0.52%)
•  Parallelization

–  FindBestPlane → Parallel Prefix
–  ClassifyTriangles → Fully Parallel

..

....

Methodology
•  Both algorithms implemented using Intel TBB
•  Five 3D models from

–  Stanford 3D Scanning Repository
–  Georgia Tech’s Large Geometric Models Archive
–  The Utah 3D Animation Repository

•  Machine configurations

bunny (69K)

fairy (173K)

dragon (871K)

happy (1M)

angel (474K)

Processor Xeon E7450
(“Dunnington”)

Xeon X7550
(“Beckton”)

µarch Core Nehalem
Core Count 24 32
Cache 12 MB (L2) 18 MB (L3)
Memory b/w 1x 9x
Memory 48 GB 64 GB

8 B. Choi et al. / Parallel SAH k-D Tree Construction

Processor Xeon E7450 Xeon X7550
(“Dunnington”) (“Beckton”)

Microarchitecture Core Nehalem
Core Count 24 32
Socket Count 4 4
Last-level Shared Cache Size 12 MB (L2) 18 MB (L3)
Frequency 2.4 GHz 2.0 GHz
Memory Bandwidth 1x 9x
Memory Size 48 GB 64GB

Table 1: Experimental Setup

Nested In-Place
Model Best-serial 1-core 32-core 1-core 32-core
Bunny 0.304 0.455 0.068 0.512 0.050
Fairy 0.737 1.10 0.146 1.50 0.116
Angel 2.16 3.09 0.337 6.98 0.387
Dragon 3.75 5.50 0.654 8.63 0.744
Happy 4.67 6.89 0.835 11.8 0.951

Table 2: Running times, in seconds, on Beckton.

relative speedups are reported solely to understand paral-
lel scalability of the algorithms. These use the single-thread
runs of the parallel nested and in-place implementations as
their 1x baseline. These single-thread versions do the same
“work” as the parallel versions, including the unnecessary
prescan portions of the parallelized phases. For reference,
Table 2 lists running times, in seconds, for the best-serial,
nested, and in-place algorithms on the Beckton machine,
which also clarifies the difference between best-serial algo-
rithm performance and one-core parallel algorithm perfor-
mance.

Performance on state-of-the-art machine. Fig. 6 shows the
absolute speedups of nested (left) and in-place (right), mea-
sured on the Beckton machine. Nested achieves nearly 8x
speedup on Angel and in-place reaches 7x on Fairy. These
represent the best parallel speedup for the upper levels of
precise-SAH k-D tree construction to date.

The absolute speedup plot shows that for smaller Bunny
(scanned) and Fairy (gaming, varying-sized triangle) inputs,
in-place performs better than nested, whereas nested outpe-
forms in-place on larger (scanned, uniform-sized triangles)
inputs. The performance of both algorithms saturates as the
number of cores increase. Nested saturates sooner than in-
place and, in fact, degrades significantly from the peak in all
cases. Thus, although nested outperforms in-place for three
out of five cases on the evaluated machine, the results in-
dicate that in-place is more scalable. We next investigate in
more detail the scalability of the two algorithms and the im-
plications for future machines.

Scalability and performance on future machines. Fig. 7
shows the self-relative speedup of nested (left) and in-place
(right) over our five inputs. This metric removes the impact

of the increased amount of work done in the parallel algo-
rithms (compared to the best sequential algorithm). By fix-
ing the amount of work done across different thread counts,
it provides us with a deeper insight on how effectively each
algorithm exploits parallelism. The higher the self-relative
speedup, the higher the potential for future larger machines
with more cores to mitigate the cost of the increased work
with increased parallelism. To further understand the effec-
tiveness of the two algorithms in exploiting additional re-
sources in new generations of machines (e.g., larger caches
and memory bandwidth), we show self-relative speedups for
both the newer Beckton (solid line) and the older Dunning-
ton (dashed lines) machines.

The figure immediately shows that in-place is more ef-
fective at exploiting parallelism than nested for all inputs
on both machines. Although both algorithms perform bet-
ter on the newer machine, in-place is better able to exploit
the resources of the newer machine. Fig. 8 quantifies this
effect by showing the ratio of the best execution time of
nested relative to in-place for both machines (> 1 implies
that in-place is faster). The figure clearly shows that for the
two inputs where in-place starts out better on the older ma-
chine, its performance advantage increases further on the
new machine. Conversely, for the cases where nested starts
better, its performance advantage reduces on the new ma-
chine. Although in-place performance does not yet catch up
with nested on the new machine for these cases, the follow-
ing analysis shows that it is likely that in-place will continue
to show higher scalability than nested in newer machines,
potentially outperforming it for all cases.

The main bottleneck to scalability for nested is its

8 16 24 32

Number of Threads

0

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

8 16 24 32

A
b

so
lu

te
 S

p
ee

d
up

Number of Threads

bunny
fairy
angel
dragon
happy

Nested In-place

Figure 6: Absolute speedup of the nested and in-place par-
allel algorithms for five inputs on the Beckton machine.

submitted to EUROGRAPHICS 200x.

Results (Beckton)
~8x

~7x

Large,
scanned inputs

Smaller,
heterogeneous

Scalability Analysis

B. Choi et al. / Parallel SAH k-D Tree Construction

both the newer Beckton (solid line) and the older Dunning-
ton (dashed lines) machines.

The figure immediately shows that in-place is more ef-
fective at exploiting parallelism than nested for all inputs on
both machines. Although both algorithms perform better on
the newer machine, in-place is better able to exploit the re-
sources of the newer machine. Fig. 8 quantifies this effect by
showing the ratio of the best speedup of in-place relative to
nested for both machines (> 1 implies that in-place is faster).
The figure clearly shows that for the two inputs where in-
place starts out better on the older machine, its performance
advantage increases further on the new machine. Conversely,
for the cases where nested starts better, its performance ad-
vantage reduces on the new machine. Although in-place per-
formance does not yet catch up with nested on the new ma-
chine for these cases, the following analysis shows that it is
likely that in-place will continue to show higher scalability
than nested in newer machines, potentially outperforming it
for all cases.

0.50

1.00

1.50

bunny fairy angel dragon happy

P
er

fo
rm

an
ce

 o
f i

n-
p

la
ce

/n
es

te
d Dunnington

Beckton

In-place
better

Nested
better

Figure 8: Performance of in-place relative to nested on the
Dunnington and Beckton machines, on all five inputs (> 1
means in-place is better).

The main bottleneck to scalability for nested is its
hard-to-parallelize CLASSIFYTRIANGLES phase. Amdahl’s
law [Amd67] states that the theoretical maximum speedup
attainable using N threads for a program whose parallelize-
able fraction is P is given by 1/((1− P) + (P/N)). Ta-
ble 3 indicates these maximum absolute (and self-relative)
speedups for nested, based on measurements of the fraction
of the execution time spent in CLASSIFYTRIANGLES on the
Beckton machine.

For example, nested achieves close to 8x absolute speedup
on Angel using 20 threads, whereas Table 3 indicates the
theoretical maximum speedup of the nested algorithm is
slightly less than 10.1x using 20 threads. Thus, nested is
already seeing most of its theoretical maximum speedup.
The degradation beyond that point is likely due to the in-
creased communication and parallelization overhead with
larger number of threads that is not mitigated enough by the
increased parallelism.

The in-place algorithm, on the other hand, does not suffer

Input 24 threads 32 threads ∞ threads
bunny 11.5 (14.2) 12.9 (16.5) 21.0 (33.1)

fairy 11.6 (14.4) 13.1 (16.8) 21.6 (34.4)
angel 10.1 (13.5) 11.2 (15.6) 16.7 (29.6)

dragon 9.4 (13.4) 10.3 (15.5) 14.7 (29.3)
happy 9.4 (13.2) 10.3 (15.2) 14.8 (28.1)

Table 3: Theoretical maximum absolute (and self-relative)
speedups achievable by the nested algorithm, based on par-
allelizable fraction on the Beckton machine.

from such a bottleneck since it does not contain any signifi-
cant sequential portion. The performance saturation at larger
core counts seen in in-place is likely due to limited system
resources; e.g., cache size and memory bandwidth. To in-
vestigate this hypothesis, we ran our experiments with all
threads scheduled in as few sockets as possible (the default
scheduler spreads the threads among the sockets) – this had
the positive effect of more cache sharing for smaller input
sizes and the negative effect of reduced available pin band-
width for larger input sizes. We found that the performance
of our algorithms was indeed sensitive to the thread place-
ment, showing both the above positive and negative effects
(detailed results not shown here).

In summary, we believe that higher core counts coupled
with larger caches and memory bandwidth in future ma-
chines will allow in-place to continue seeing performance
improvements. The performance scalability for nested, how-
ever, is likely to be limited by its serial bottleneck.

8. Conclusion

We have presented and analyzed a pair of algorithms de-
signed to address the lack of scalability and/or lack of quality
in the upper levels of spatial hierarchies construction. Using
our prototype implementations, we showed that our two al-
gorithms, nested and in-place, can achieve speedups of up to
8x and 7x, respectively, over the best sequential performance
on a state-of-the-art 32-core cache-coherent shared-memory
machine. To our knowledge, these algorithms provide the
best known speedups for precise SAH-based high quality k-
D tree construction, relative to a sequential case that is better
than the best publicly available code.

Each algorithm outperforms the other on some of our
inputs for the current state-of-the-art machine, but the in-
place approach showed better scalability. Using data ob-
tained from two machines that are a product generation
apart, we show that in-place is more effective in harness-
ing the additional system resources of new machine genera-
tions (e.g., cache size and memory bandwidth) than nested.
We showed that nested is limited in scalability by a sequen-
tial Amdahl’s law bottleneck. Overall, we conclude that the
in-place algorithm has more potential to scale in future gen-
eration multicore hardware.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Input 32 threads ∞ threads
bunny 12.9 21.0
fairy 13.1 21.6
angel 11.2 16.7
dragon 10.3 14.7
happy 10.3 14.8

•  Future hardware
–  More cores
–  Larger caches
–  More memory b/w

•  Nested has sequential portion
=> Amdahl’s Law

Conclusion / Future Work
•  Parallel build of high-quality k-D tree critical for ray tracing

–  Prior work trades quality for performance
•  We show parallel build with high quality AND performance

–  Two algorithms with up to 8x speedup
–  Different performance/scalability characteristics

•  Future work
–  GPU implementation of in-place

Streaming nature more amenable to SIMD-fication

Thank You!
•  Questions?

