
HLBVH: Hierarchical LBVH

Construction for Real Time Ray

Tracing of Dynamic Geometry
Jacopo Pantaleoni and David Luebke

NVIDIA Research

Some Background

• Real Time Ray Tracing is almost there*

[Garanzha and Loop 2010, Aila and Laine 2009, Wald et al 2007, ...]

160-200 M rays/s on GF480

1

Some Background

• Real Time Ray Tracing is almost there*

[Garanzha and Loop 2010, Aila and Laine 2009, Wald et al 2007, ...]

160-200 M rays/s on GF480

* but only for static scenes

2

Some Background

• Real Time Ray Tracing is almost there*

[Garanzha and Loop 2010, Aila and Laine 2009, Wald et al 2007, ...]

160-200 M rays/s on GF480

* but only for static scenes

• Spatial Index construction real-time only for 100K tris!

3

Some Background

• Real Time Ray Tracing is almost there*

[Garanzha and Loop 2010, Aila and Laine 2009, Wald et al 2007, ...]

160-200 M rays/s on GF480

* but only for static scenes

• Spatial Index construction real-time only for 100K tris!

• Our target is 1M dynamic tris

4

Some Background

• Many approaches: refitting, partial rebuilds...

but LBVH [Lauterbach et al] probably fastest

available GPU builder

5

Some Background

• Many approaches: refitting, partial rebuilds...

but LBVH [Lauterbach et al] probably fastest

available GPU builder

• still not fast enough... 1M tris => ~150ms

6

Some Background

• Many approaches: refitting, partial rebuilds...

but LBVH [Lauterbach et al] probably fastest

available GPU builder

• still not fast enough... 1M tris => ~150ms

• But could be made faster!

7

LBVH

• Consider barycenters of each primitive

8

LBVH

• Consider barycenters of each primitive

so that it works with point sets

9

LBVH

• Consider barycenters of each primitive

so that it works with point sets

• sort them along a 1D Morton curve

through a grid...

10

LBVH

• Consider barycenters of each primitive

so that it works with point sets

• sort them along a 1D Morton curve

through a grid...

• and group them by cell

11

LBVH

• Morton codes computed using 10 bits per component

• primitives sorted with a single 30bit global sort

• parallel hierarchy emission required 2 additional

sorting operations on W(N * 30) split planes

12

H(ierarchical)LBVH

13

HLBVH = Hierarchical LBVH

HLBVH: at a glance

• hierarchical process

• exploit spatial and temporal coherence in the input mesh

• novel hierarchy emission algorithm

• novel SAH hybrid

14

HLBVH: primitive sorting

• Given a point its Morton code is obtained interleaving

the bits of its coordinates:

e.g. (0100, 1001, 0111) => 010101001011

• Each triplet of bits => next octant in a grid hierarchy:

2D example: 0111

15

01

11

HLBVH: primitive sorting

• Consider a 2 level hierarchy:

coarse: 3m bits

fine: 3n bits

16

1

2

3

4

5 6

HLBVH: primitive sorting

• Consider a 2 level hierarchy:

coarse: 3m bits

fine: 3n bits

• smaller m => higher chances consecutive prims

fall in the same voxel (e.g. {1,2}, {3,4})

17

1

2

3

4

5 6

HLBVH: primitive sorting

• Consider a 2 level hierarchy:

coarse: 3m bits

fine: 3n bits

• smaller m => higher chances consecutive prims

fall in the same voxel (e.g. {1,2}, {3,4})

• Exploit coherence:

Compress-Sort-Decompress [Garanzha and Loop 2010]

within coarse grid

18

1

2

3

4

5 6

• Compute n-bit Morton codes

• Compress: run-length encode based on first 3m bits

HLBVH: primitive sorting (part 1)

19

1

2

3

4

5 6

?

?

? ??

?

• Compute n-bit Morton codes

• Compress: run-length encode based on first 3m bits

• Sort : do a 3m-bit radixsort of the rle key blocks

HLBVH: primitive sorting (part 1)

20

1

2

3

4

5 6

?

?

? ??

?

• Compute n-bit Morton codes

• Compress: run-length encode based on first 3m bits

• Sort : do a 3m-bit radixsort of the rle key blocks

• Decompress: run-length decode sorted keys

HLBVH: primitive sorting (part 1)

21

1

2

3

4

5 6

?

?

? ??

?

• CSD at work:

{ 7, 7, 1, 1, 1, 3, 3, 4, 5, 5 }

HLBVH: primitive sorting (part 1)

22

1

2

3

4

5 6

?

?

? ??

?

• CSD at work:

{ 7, 7, 1, 1, 1, 3, 3, 4, 5, 5 }

• Compress:

{ 7, 1, 3, 4, 5 } run values

{ 2, 3, 2, 1, 2 } run lengths

HLBVH: primitive sorting (part 1)

23

1

2

3

4

5 6

?

?

? ??

?

• CSD at work:

{ 7, 7, 1, 1, 1, 3, 3, 4, 5, 5 }

• Compress:

{ 7, 1, 3, 4, 5 } run values

{ 2, 3, 2, 1, 2 } run lengths

• Sort:

{ 1, 3, 4, 5, 7 } run values

{ 3, 2, 1, 2, 2 } run lengths

HLBVH: primitive sorting (part 1)

24

1

2

3

4

5 6

?

?

? ??

?

• CSD at work:

{ 7, 7, 1, 1, 1, 3, 3, 4, 5, 5 }

• Compress:

{ 7, 1, 3, 4, 5 } run values

{ 2, 3, 2, 1, 2 } run lengths

• Sort:

{ 1, 3, 4, 5, 7 } run values

{ 3, 2, 1, 2, 2 } run lengths

• Decompress:

{ 1, 1, 1, 3, 3, 4, 5, 5, 7, 7 }

HLBVH: primitive sorting (part 1)

25

1

2

3

4

5 6

?

?

? ??

?

HLBVH: primitive sorting (part 1)

26

• Meshes often show such

coherence

Levy et al

HLBVH: primitive sorting (part 2)

• Prims are now sorted

in coarse voxels

27

1

2

3

4

5 6

3

2

4 65

1

• Prims are now sorted

in coarse voxels

• Sort within each voxel using

intra-cta (shared-mem) sort

HLBVH: primitive sorting (part 2)

28

1

2

3

4

5 6

3

2

4 65

1

4

2

5 63

1

HLBVH: primitive sorting (results)

• By CSD we have substantially

reduced BW taking advantage

of spatial coherence

• And if we reuse the final ordering

across frames, we can take advantage

of temporal coherence too

29

1

2

3

4

5 6

3

2

4 65

1

4

2

5 63

1

HLBVH: hierarchy emission

• This is all good, but we are still left with

hierarchy emission, which is the hard part:

hierarchy emission prim sorting

2 * W (N*30) sorts vs 1 * O(N) sort

in LBVH

30

HLBVH: hierarchy emission

• Input: array of sorted prims

• Output: array of nodes forming a tree

31

HLBVH: hierarchy emission

• Input: array of sorted prims

(sequence of Morton codes)

32

HLBVH: hierarchy emission

• Input: array of sorted prims

(sequence of Morton codes)

• Output: sequence of nested

segments

33

HLBVH: hierarchy emission

• Input: array of sorted prims

(sequence of Morton codes)

• Output: sequence of nested

segments

34

HLBVH: hierarchy emission

• Partial Breadth First Traversal

• Consider p-bit planes

at a time

35

HLBVH: hierarchy emission

• Partial Breadth First Traversal

• Consider p-bit planes

at a time

36

HLBVH: hierarchy emission

• Partial Breadth First Traversal

• Consider p-bit planes

at a time

• For each segment, emit a treelet

37

HLBVH: hierarchy emission

• Partial Breadth First Traversal

• Details in the paper

38

HLBVH: hierarchy emission

• Partial Breadth First Traversal

• Details in the paper

39

HLBVH: SAH Hybrid

• Lauterbach and Wald suggested to perform SAH at the
bottom of the tree

40

HLBVH: SAH Hybrid

• Lauterbach and Wald suggested to perform SAH at the
bottom of the tree

• But with CSD we can do better!

Our coarse clusters can be used

to build a SAH-based top-level

tree

41

HLBVH: SAH Hybrid

• Lauterbach and Wald suggested to perform SAH at the
bottom of the tree

• But with CSD we can do better!

Our coarse clusters can be used

to build a SAH-based top-level

tree

• As the clusters are few, the overhead is low

42

HLBVH: SAH Hybrid

• Not only this is faster...

• It´s also better because

the top-level tree is what

matters mostly

43

HLBVH: results

• We reduced BW by >10x

• We exploit spatial and temporal coherence

• Support fully dynamic geometry, from deformations

to chaotic fracturing

• Low-overhead SAH hybrid

44

HLBVH: results

• 1M fully dynamic tris => ~35ms

45

HLBVH: results

• 2M incoherent

• 350k coherent

46

HLBVH: code

• Cleanly coded using Thrust

• Will be available at:

http://code.google.com/p/hlbvh/

47

HLBVH

Thank You!

48

