“Processor Graphics”

Tom Piazza
Sr. Fellow, Director Of Graphics
Intel, Folsom
My Brief History

• I started at General Electric in 1978
 – Flight Simulators $10M each
 • Sold by the pound
 – Short list of 1st’s:
 • Procedural textures (1978)
 • Bitmap Textures – Tri-linear Filtered (1983)
 • Tile Based Deferred Rendering (1986)
 • Z Buffered Real-time Rendering (1986)
 • 16X MSAA Antialiasing (Color and Z) (1986)
 • Geometry Tessellation (1986)
 – Then there was Intel740® Graphics Accelerator
Short History of Graphics at Intel

• Intel 740 - Initially started as a joint venture with Real3D (Derived from General Electric’s Flight Simulator business)
 • Original intention was to create a discrete graphics business
 – Got redirected to Chipset Integrated
 – White Space
 • Intended for Business users, Mom and Pop
 • Not Gamers – OK, maybe casual gamers (WOW)
What Changed: Visual User Experiences - Exploding

Vastly Richer Displays
High dpi, touch, Stereo3D, widi
Draw more, richer pixels

New Gfx Usages
HTML5 makes Web 3D
Advanced User Interface
Realistic 3D gaming

Traditional Media
Transcode, LP Media, HQ Video
Conferencing, 4k Media, HEVC

Comp & Environment
Competition investing in big Gfx
Apple: Big Gfx iMac, MBP, MBA
Android: GPU > important vs CPU
Win8 Metro: new min Gfx bar
Next-gen Consoles est in ‘13
Hetero CPU+Gfx Programming

pGfx Arch Wins in Thin Form Factor
Scales up in Perf - $6.5B dGfx SAM

Visual Computing Central to New User Experience

PC expectations are now the expectations of a Tablet (Ease of Use) with the UI of a PC (Keyboard, Mouse)
What we said ... and then ...

Integrated Graphics Leadership

Leading Process Technology

Performance

65 nm
45 nm
32 nm

10X
8X
6X
4X
2X

10X PERFORMANCE BY 2010

2006 2007 2008 2009 2010

65 nm
45 nm
32 nm

130 nm
90 nm

Property of Intel
... what we delivered:
Processor Graphics – Sandybridge

• Sandybridge is 1st incarnation (2010)
 – Cache sharing (sets a stage 😊)
 – Power Sharing – Voltage and MHZ modulated
 • CPU Hi, Gfx Lo workload \(\rightarrow\) Power to CPU
 • CPU Lo, Gfx Hi workload \(\rightarrow\) Power to GPU
 – DX10.1
 – OpenGL3.0 at initial release, OpenGL3.1 on present release
Sandybridge Exceeds 10X by ’10 Goal

Mobile Mainstream Competitive Performance

Assumes PRQ dates. SNB config: 2.8GHz 4+2 8MB LLC shared 1300MHz Core and 2xDDR3-1600. 3DMark05 is used since 3DMark2006 has a SM3.0 test that does not run on 2006 parts. 3DMark2006 SM2.0 sub-test is shown since Gen driver optimizations for all recent devices are not focused on 3DMark2005.
Processor Graphics – Ivybridge

• Ivybridge is 2nd incarnation (2011)
 – Same power and cache sharing
 – DX11
 – OCL1.2 - OpenGL3.3 at initial release

• Performance wise, Ivybridge is basically an XBox360 on every laptop
Ivy Bridge Graphics and Media Microarchitecture Overview

- Next generation Intel® Core™ microprocessor on the latest 22-nm process
- Improved Game Playability
 - More 3D performance
 - Microsoft* DirectX*11 Support
- Significant Media Performance
 - Higher performing Intel® Quick Sync Video
- Three Native Display Support

Property of Intel
Intel® Next Generation Microarchitecture Codename Ivy Bridge
Ivy Bridge HD Graphics: mArchitecture

μArchitecture Changes

Scalable Architecture partitioned into 5 domains:

1. Global Assets: Includes Geometry Front-end up to Setup
2. Slice Common: Includes Rasterizer, L3$ and Pixel Back-end
3. Slice: Shaders (EUs), IC$, Samplers, Addr Gen
4. CODEX and media
5. Displays

Sets the stage for further scale-up opportunities
Ivy Bridge HD Graphics: Architecture

Adds Significant 3D Enhancements

Microsoft* DirectX* 11

Hardware Tessellation
- Adds two programmable stages (HS and DS) and one fixed function Tessellator

New Compressed Texture Format Support (BC6H/7)
Compute Shader Support

- Data Parallelism
- UAVs, Atomics, Barriers, etc for compute shader ops
- Shared Local Memory aka Thread Group Local Memory for Direct Compute* Shaders
- Scatter gather

Shader Array adds support for Shader Model 5.0 (New DX11 Instructions)
Ivy Bridge HD Graphics: μArchitecture

μArchitecture Changes

- Improved Geometry Performance
 - Faster GS and H/w Stream-out
 - Faster Clip/Setup
- Fast Clear of Render Target
- Increase in Hi-Z Performance
- Sampler throughput
 - Improved Anisotropic Quality
- Increased compute throughput (peak GFLOPs)
 - Increased # of threads/registers to cover latency and support complex shaders
 - “Enhanced” coissue
- L3$ lowers BW need from Ring Architecture
- Media Applications benefit from infrastructure changes in EU/L3$/etc
Ivy Bridge HD Graphics: mArchitecture

Significant Media Performance

- Higher performing Intel® Quick Sync Video

μArchitecture Changes

- Enhanced Performance for Multi-Format CODEC
- Increased Media Sampler Throughput and performance for scaling and other filters
- Pixel Back end has Image Color and Contrast Enhancement capabilities
Processor Graphics Future Goals

• Maximize performance attainable within specific “socket” limits
 – 25Watt Laptops
 – 15Watt Thin and Light “Ultra-Books”
 – 3-5Watt Tablets and Phones
How do we do this?

• Most efficient operating point of anything in silicon is at the knee of the process:
 – Power = C * V^2 * F
 – Max Frequency allowed at Vmin since Voltage has a squared power function (cubic when leakage is factored in)

• Future products will have sustained power limits at Vmin
 – Higher power in “bursts” if Silicon is “cold”
Summary

• Intel® Next Generation Microarchitecture, Codename Ivy Bridge, is the 1st product on 22 nm process technology

• Another big leap in Performance/Power efficiency in both IA core and Graphics/Media

• Features for improved Security, better Battery life, new Memory technology (DDR3L), better Overclocking support

• Next generation Graphics microarchitecture is a Significant Graphics and Media (“tick+”) evolution for Intel® HD Graphics

It’s Just The Beginning...
Some Metrics

<table>
<thead>
<tr>
<th></th>
<th>Sandybridge</th>
<th>Ivybridge</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Ghz</td>
<td>1.3</td>
<td>1.2</td>
<td>1.X</td>
</tr>
<tr>
<td>Shaders</td>
<td>12</td>
<td>16</td>
<td>Much More</td>
</tr>
<tr>
<td>MAD / Clk</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Plane / Clk</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Max Gflops (Plane+MAD)</td>
<td>250</td>
<td>461</td>
<td>Much More</td>
</tr>
<tr>
<td>Max Gflops (MAD+MAD)</td>
<td>125</td>
<td>307</td>
<td>Much More</td>
</tr>
<tr>
<td>Samplers @ 4 Texels / Clk</td>
<td>1</td>
<td>2</td>
<td>Much More</td>
</tr>
<tr>
<td>Scatter/Gather / Clk</td>
<td>1</td>
<td>32</td>
<td>Much More</td>
</tr>
<tr>
<td>DX Rev</td>
<td>10.1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>OGL Rev</td>
<td>3.0</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>OCL Rev</td>
<td>NA</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Scalability – GenX

- “Slice” Based
- At 1GHz, provides 2 TFLOP of shader performance (GT4)
- Chop:
 - Slice Half – GT1
 - Right Half – GT2
 - Bottom Half – GT3
Conclusion

• Intel is committed to a comprehensive graphics roadmap:
 – Maximum performance on “Battery” driven platforms:
 • Laptops → Tablets → Phones

• Always looking for talent
 – Many Geographies
 – The sun never sets on Intel 😊
Q & A