HPG2012 Hot3D Cool3D

Design Tradeoffs in the Kepler Architecture

June 26, 2012 Steve Molnar

Kepler GK110 Block Diagram

Architecture

- 7.1B Transistors
- 15 SMX units
- > 1 TFLOP FP64
- 1.5 MB L2 Cache
- 384-bit GDDR5
- PCI Express Gen3

Performance

Programmability

Efficiency

The Kepler architecture family had many goals, but the key goal was *efficiency* (perf/watt)

- On Fermi we designed for max performance, but found ourselves power-limited in many cases:
 - Tesla high-performance compute parts were power limited and had to run at lower voltage and clocks than the design allowed
 - Dual-GPU systems had to run at lower clocks
 - Mobile parts required lower-than-desirable voltage and clocks to maintain battery life

On Kepler power was critical

- Below ~0.1µm, CMOS power no longer scales with feature size
 - Moving to a smaller process, a chip of given size burns more power than the previous one
 - You can lower voltage (and clock speed), but that's no solution
- In Kepler's 28nm process, we could be power limited by 50%
- Time for decisive action!

Kepler took holistic view of power

- We had previously designed to reduce power, but on Kepler, we attacked power holistically
 - Tools to measure power consumed by each unit
 - Aggressive clock and power-gating
 - Redesigned shader core to greatly increase efficiency
 - Redesign of GDDR5 DRAM I/O for speed and power
 - Architectural enhancements to reduce work
- In the remainder of this talk I will discuss several of these and some other system-level design tradeoffs

Fermi SM compared to Kepler SMX

SM										
Instruction Cache										
Warp Scheduler Warp Scheduler										
Dis	upatch U	nit	Dispatch Unit							
Ŧ	+	+	+	+	Ŧ					
Core	Core	Core	Core	LD/ST LD/ST						
Core	Core	Core	Core	LD/ST	SPU					
Core	Core	Core	Core	LD/ST						
Core	Core	Core	Core	LD/ST	SFU					
Core	Core	Core	Core	LD/ST	Η					
Core	Core	Core	Core	LD/ST	SFU					
1000				LD/ST						
Core	Core	Core	Core	LD/ST LD/ST						
Core	Core	Core	Core	LD/ST	are					
-	SSS ant	erconne	ct Netwo	HK SSSS	-					
64 KB Shared Memory / L1 Cache										
Uniform Cache										
Tex Tex Tex Tex										
Texture Cache										

- 3x the math units
- Greatly increased
 efficiency

Instruction Cache															
Warp Scheduler				۷	Varp S	chedul	er	Warp Scheduler				Warp Scheduler			
Dispatch Unit Dispatch Unit			Dispatch Unit Dispatch Unit			Dispatch Unit Dispatch Unit			Dispatch Unit Dispatch Unit			ch Unit			
+ +			+ +				-	-	- 1	-		ŀ		-	
	Register File (65,536 x 32-bit)														
+	+	+	+	+ + + +				* * * *				+ + + +			
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
		-													
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SEU	Core	Core	Core	Core	Core	Core	LDIST	SEU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
															-
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Corro	Core	Core	Corro	Com	Core	IDIST	9511	Core	Core	Core	Core	Core	Core	IDIST	ecu
Core	Core	Core	Core	Core	Core	LUIST	550	Core	Core	Core	Core	Core	Core	LUIST	50
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
											_				
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SEU	Core	Core	Core	Core	Core	Core	LDIST	SEU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
						-									
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Corr	Corre	Corr	Corre	Corr	Corr	I DIST	SEL	Core	Corre	Corre	Core	Core	Core	1000	ecu
Core	Core	Core	Core	Core	Core	LUIST	540	Core	Core	Core	Core	Core	Core	LUIST	51-0
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
						_								<u> </u>	
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Tartura Casha															
	64 KB Shared Memory / L1 Cache														
Uniform Cache															
Те	ex 🛛	Т	эx		∋x		ex	Те		Te		Т		Te	
7.							a v	-							
Tex Tex		ex.		9X		Tex		Tex		Tex		Tex		Tex	

SM redesigned with power efficiency in mind

2x hardware at ½ clock frequency

- Reduces power consumption
- 40nm to 28 nm provides more area
- Overall result
 - SMX Performance is up
 - SMX Power is down
 - Perf/watt metric benefits from both

BWIA															
Instruction Cache															
۷	Varp So	chedul	e r	Warp Scheduler			Warp Scheduler				Warp Scheduler				
Dispatch Unit Dispatch Unit			Dispatch Unit Dispatch Unit			Dispatch Unit Dispatch Unit				Dispatch Unit Dispatch Unit					
-	-	_	L	+ +				-	-	- 1	-	+ +			
Register File (65,536 x 32-bit)															
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Core	Core	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Core	Core	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LD/ST	SFU
Core	Core	Core	Core	Core	Core	LD/ST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
Core	Core	Core	Core	Core	Core	LDIST	SFU	Core	Core	Core	Core	Core	Core	LDIST	SFU
	Texture Cache														
64 KB Shared Memory / L1 Cache															
Uniform Cache															
Те	x	Т	эx	Т	эx	Т	ex	Te	x	Те	x	Т	эx	Те	x
Tex Tex			×	Т	ex.	Т	ex	Те	×	Т	x	Tex		Т	x
Tex								Tex		rex					

Optimizing for area vs. optimizing for power

Scheduling complexity moved from hardware to compiler

New GDDR5 DRAM controller

Clean slate design to:

- Achieve peak GDDR5 speed
- Minimize power

World's first
 6Gbps GDDR5

Texture improvements

- SMX vs Fermi SM :
 - 4x filter ops per clock
 - 4x cache capacity
- In most texture-heavy regimes, shader is not limited by texture

Other Kepler improvements

Bindless Textures

- Dramatic increase in the number of unique textures available to shaders at run-time
- More different materials and richer texture detail in a scene

Atomic instruction enhancements

- Shorter processing pipeline
- More atomic processors
- Slowest 10x faster
- Fastest 2x faster
- Added int64 functions to match existing int32
- 2x-10x performance increase

High speed atomics enable new uses

Atomics are now fast enough to use within inner loops

Example: Data reduction (sum of all values)

Without Atomics

- 1. Divide input data array into N sections
- 2. Launch N blocks, each reduces one section
- 3. Output is N values
- 4. Second launch of N threads, reduces outputs to single value

High speed atomics enable new uses

Atomics are now fast enough to use within inner loops

Example: Data reduction (sum of all values)

With Atomics

- 1. Divide input data array into N sections
- 2. Launch N blocks, each reduces one section
- 3. Write output directly via atomic. No need for second kernel launch.

GPU virtualization enables cloud gaming

- Kepler host and memory virtualization allow multiple virtual GPUs to be hosted on a single physical GPU
- Other critical pieces:
 - Fast hardware encoder works directly from render target
 - Cloud servers
 - Fast, low-latency WAN
- Used by Gaikai (www.gaikai.com)

GeForce VGX Cloud GPU

The fastest, most powerful, lowest-latency cloud network on the market

Gaikai offers a bleeding-edge open platform technology that allows the most demanding games and applications to be seamlessly streamed via any connected video capable device including PCs, digital TVs, tablets and smart mobile devices. Having the fastest, lowest-latency, most sophisticated cloud network in the world enables users to experience rich media content as if they were running it locally.

Dynamic Parallelism (GK110+)

What is Dynamic Parallelism?

The ability to launch new work from the GPU

- Dynamically
- Simultaneously
- Independently

Fermi: Only CPU can generate GPU work

Kepler: GPU can generate work for itself

What Does It Mean?

GPU as Co-Processor

Autonomous, Dynamic Parallelism

Batched & Nested Parallelism

CPU-Controlled Work Batching

- CPU programs limited by single point of control
- Can run at most 10s of threads
- CPU is fully consumed with controlling launches

Batched & Nested Parallelism

Batching via Dynamic Parallelism

- Move top-level loops to GPU
- Run thousands of independent tasks
- Release CPU for other work

Algorithm flow simplified for illustrative purposes

Supporting an Architecture Family

gk107

gk110

Kepler isn't a chip – it's an architecture family

- Same base architecture must scale over wide range, diverse markets
 - Mobile graphics
 - Consumer desktop and enthusiast graphics
 - Workstation / professional graphics
 - High-performance computing (gk110)

Scaling and feature parameters

Major configuration parameters (there are many more)

Note some are non-power-of-2

Chip	GPCs	SMX per GPC	FBs	L2 size	ECC	Fast FP64
gk104	4	2	4	512K	No	No
gk107	1	2	2	256K	No	No
gk110	5	3	6	1536K	Yes	Yes

Market requirements determine configuration

- Resource balance not the same at each level
- Can change during project development
- Arch model is quick; a lot of work remains for physical + pad design

Lots more

- GPU Boost
- Adaptive Vsync
- New shader instructions

For more information:

Kepler whitepaper:

http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf

GeForce GRID (cloud gaming):

- http://www.geforce.com/whats-new/articles/geforce-grid
- GPU Technology Conference presentations:
 - www.gputechconf.com

Acknowlegments: thanks to Lars Nyland, James Wang, and Jonah Alben for many of the slides used here and to the entire Kepler team.