
Design Tradeoffs in the
Kepler Architecture

June 26, 2012

Steve Molnar

HPG2012 Hot3D Cool3D

Kepler GK110 Block Diagram

Architecture

7.1B Transistors

15 SMX units

> 1 TFLOP FP64

1.5 MB L2 Cache

384-bit GDDR5

PCI Express Gen3

The Kepler GPU architecture was designed for

Efficiency

Programmability

Performance

The Kepler architecture family had many goals,
but the key goal was efficiency (perf/watt)

On Fermi we designed for max performance, but found ourselves
power-limited in many cases:

Tesla high-performance compute parts were power limited and had to
run at lower voltage and clocks than the design allowed

Dual-GPU systems had to run at lower clocks

Mobile parts required lower-than-desirable voltage and clocks to
maintain battery life

On Kepler power was critical

Below ~0.1µm, CMOS power no longer scales with feature size

Moving to a smaller process, a chip of given size burns more power
than the previous one

You can lower voltage (and clock speed), but that’s no solution

In Kepler’s 28nm process, we could be power limited by 50%

Time for decisive action!

Kepler took holistic view of power

We had previously designed to reduce power, but on Kepler, we
attacked power holistically

Tools to measure power consumed by each unit

Aggressive clock and power-gating

Redesigned shader core to greatly increase efficiency

Redesign of GDDR5 DRAM I/O for speed and power

Architectural enhancements to reduce work

In the remainder of this talk I will discuss several of these – and
some other system-level design tradeoffs

Fermi SM compared to Kepler SMX

• 3x the math units

• Greatly increased

efficiency

SM redesigned with power efficiency in mind

2x hardware at ½ clock frequency

Reduces power consumption

40nm to 28 nm provides more area

Overall result

SMX Performance is up

SMX Power is down

Perf/watt metric benefits from both

Optimizing for area vs. optimizing for power

Fermi

2x clock
A B

A

A

B

B

Kepler

1x clock

Logic

Area Power

1.0x 1.0x

1.8x 0.9x

Clocking

Area Power

1.0x 1.0x

1.0x 0.5x

Scheduling complexity moved from hardware
to compiler

Multi-port

Register

Scoreboard

Multi-port

Post-decode

Queue

Dependency

Check
Reorder Issue

Decoder

Fermi

HW Dependency

Check

Kepler

SW Pre-decode
IssueSelect

Decoder
Inst.

Cache

Inst.

Cache
Sched. info

New GDDR5 DRAM controller

Clean slate
design to:

Achieve peak
GDDR5 speed

Minimize
power

World’s first
6Gbps GDDR5

Texture improvements

SMX vs Fermi SM :

4x filter ops per clock

4x cache capacity

In most texture-heavy regimes, shader is
not limited by texture

Tex

SMX

L2

TexTexTex

Read-only
Data Cache

Groundbreaking Power Efficiency

Other Kepler improvements

Bindless Textures

Dramatic increase in the number of unique textures available
to shaders at run-time

More different materials and richer texture detail in a scene

SHADER CODE texture #0texture #0

…

texture #1texture #1

texture #2texture #2

texture

#127

texture

#127

Pre-Kepler texture binding model
128 simultaneous textures

Kepler bindless textures
over 1M simultaneous textures

…

SHADER CODE

Atomic instruction enhancements

Shorter processing pipeline

More atomic processors

Slowest 10x faster

Fastest 2x faster

Added int64 functions to match existing int32

2x-10x performance increase

High speed atomics enable new uses

Atomics are now fast enough to use within inner loops

Example: Data reduction (sum of all values)

1. Divide input data array into N sections

2. Launch N blocks, each reduces one
section

3. Output is N values

4. Second launch of N threads, reduces
outputs to single value

Without Atomics

High speed atomics enable new uses

Atomics are now fast enough to use within inner loops

Example: Data reduction (sum of all values)

1. Divide input data array into N sections

2. Launch N blocks, each reduces one
section

3. Write output directly via atomic.
No need for second kernel launch.

With Atomics

GPU virtualization enables cloud gaming

Kepler host and memory virtualization allow multiple
virtual GPUs to be hosted on a single physical GPU

Other critical pieces:

Fast hardware encoder works directly from render target

Cloud servers

Fast, low-latency WAN

Used by Gaikai (www.gaikai.com)

GeForce VGX

Cloud GPU

Dynamic Parallelism (GK110+)

What is Dynamic Parallelism?

The ability to launch new work from the GPU

Dynamically

Simultaneously

Independently

CPU GPU CPU GPU

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself

CPU GPU CPU GPU

What Does It Mean?

Autonomous, Dynamic ParallelismGPU as Co-Processor

Dynamic Work Generation

Initial Grid

Statically assign conservative

worst-case grid

Dynamically assign resources

where accuracy is required

Dynamic Grid

Fixed Grid

Batched & Nested Parallelism

Algorithm flow simplified for illustrative purposes

CPU-Controlled Work Batching

CPU programs limited by single
point of control

Can run at most 10s of threads

CPU is fully consumed with
controlling launches

CPU Control Thread

dgetf2 dgetf2 dgetf2

CPU Control Thread

dswap dswap dswap

dtrsm dtrsm dtrsm

dgemm dgemm dgemm

CPU Control Thread

Multiple LU-Decomposition, Pre-Kepler

CPU Control Thread

CPU Control Thread

Batched & Nested Parallelism

Algorithm flow simplified for illustrative purposes

Batching via Dynamic Parallelism

Move top-level loops to GPU

Run thousands of independent tasks

Release CPU for other work

CPU Control Thread

CPU Control Thread

GPU Control
Thread

dgetf2

dswap

dtrsm

dgemm

GPU Control
Thread

dgetf2

dswap

dtrsm

dgemm

GPU Control
Thread

dgetf2

dswap

dtrsm

dgemm

Batched LU-Decomposition, Kepler

Supporting an
Architecture Family

gk110

gk104gk107

Kepler isn’t a chip – it’s an architecture family

Same base architecture must scale over wide range, diverse
markets

Mobile graphics

Consumer desktop and

enthusiast graphics

Workstation / professional graphics

High-performance computing (gk110)

Scaling and feature parameters

Major configuration parameters (there are many more)

Note some are non-power-of-2

Market requirements determine configuration

Resource balance not the same at each level

Can change during project development

Arch model is quick; a lot of work remains for physical + pad design

Chip GPCs
SMX per

GPC FBs L2 size ECC
Fast
FP64

gk104 4 2 4 512K No No

gk107 1 2 2 256K No No

gk110 5 3 6 1536K Yes Yes

Summary: World’s fastest and most efficient GPUs

Efficiency

Programmability

Performance

Lots more

GPU Boost

TXAA

Adaptive Vsync

New shader instructions

For more information:

Kepler whitepaper:

http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-
Whitepaper-FINAL.pdf

GeForce GRID (cloud gaming):

http://www.geforce.com/whats-new/articles/geforce-grid

GPU Technology Conference presentations:

www.gputechconf.com

Acknowlegments: thanks to Lars Nyland, James Wang, and Jonah Alben
for many of the slides used here and to the entire Kepler team.

