

Algorithm and VLSI Architecture for Real-time 1080p60 Video Retargeting

Pierre Greisen^{1,2}, Manuel Lang^{1,2}, Simon Heinzle², Aljosa Smolic²

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

What is Aspect Ratio Retargeting?

- 'Clever' change of aspect ratio
- Keep aspect ratio of important parts
- Distort / remove visually not important parts

[Kraehenbuehl 2009]

Discrete Methods

- Remove/Add Pixels
- Related work*:
 - Seam Carving [SIGGRAPH 07]
 - Improved Seam Carving [SIGGRAPH 08]
 - Shift-Map Image Editing [ICCV 09]

* non-exhaustive

From: Avidan et.al., Seam Carving for Content-Aware Image Resizing

Continuous methods

- Find continuous transformation
- Warp/deformation grid
- Related work*
 - Non-homogenous warping, ICCV 07
 - Streaming video, SIGGRAPH 09
 - Shrinkability Maps for Content-Aware Video Resizing, PG 09
 - Robust Image Retargeting via Axis-Aligned Deformation, EG 12

Generated with the Streaming Video approach [KRA09]

From: Robust Image Retargeting

via Axis-Aligned Deformation

retargeting to 200% width using axis-aligned deformations

This Work

- Contributions:
 - Video retargeting
 - Efficient warp grid solver
 - First real-time implementation (FPGA)
 - 1080p60 at low
 HW resources

• Adaption of [KRA09] warping

- [KRA09] among the best in RetargetME

Visual Importance

- Saliency: where do people look, what is important in an image
- Video: moving objects
- No 'silver bullet' (yet?)
- Employed Algorithm:

Guo 08: Spatio-temporal Saliency Detection Using Phase Spectrum of Quaternion Fourier Transform

Real-time Spatio-temporal Saliency

- 'Video phase': 4 DOF (RGB + motion): Quaternion Fourier transform
- QFT = two 2D FTs
- Hardware efficiency:
 - Decompose image in blocks W x H/n
 - Saliency estimation per block
 - Blocks overlapping
 - Normalization

Algorithm Overview

Deformation Grid Concept

- Per-pixel deformation value (in pixels)
- Cumulative sum = Position Grid

1D Saliency Profiles

- Project 2D saliency onto 1D axes
- Block-maximum as projection operator
- Detect small but salient objects

1D Profile as Local Resize Factor

- 1D Profile: Values between 0 and 1
- Profile value for local resizing/downscaling
- Magnification: mirror profile

How to scale?

- Retargeting constraint (W \rightarrow W')
- Salient regions: resizing of 1
- Non-linear scaling
- Solve for α (binary tree search)

$$f_k(\alpha) = \min(\alpha S_k, 1), \quad s.t. \sum_{k=1}^W f_k(\alpha) = W$$
rectilinear 1D projected retargeting constraint

Temporal Filtering of the Grid

- Gaussian blur \rightarrow latency
- IIR: $y[k] = a y[k-1] + x[k] \rightarrow a constant$
- Determine 'a' based on scene motion

Algorithm Overview

Rendering

- Rectilinear grid:
 - Simplified EWA setup
 - Diagonal kernels (ops.)
 - Vertical deviations (buffer)
- Hardware-efficient and good quality (AA)

Gaussian interpolation kernel

Warped Gaussian + anti-aliasing

Algorithm Results

Images from RetargetMe Evaluation, Siggraph Asia 2010

Input

Uniform Crop Linear Scale

SV [KLHG09]

AA [PWS12]

This Work

SP

Why Hardware?

- Video retargeting as fixed-function HW core in end-user devices (displays, mobiles, TVs, set-top boxes, ...)
- Low-power @ high resolution
- Real-time capability of HD video retargeting
- FPGA HW Architecture:
 - VHDL
 - Pipelined stream processing
 - 1080p60 performance

Hardware Architecture

• FPGA board with HDMI, external frame-buffer

Implementation Results

FPGA Resources	Logic (LUTs)	Register bits	Block RAM	DSP slices
Saliency	8690	13571	847K	115
Grid Gen.	993	562	87K	12
Rendering	4071	2731	483K	80
Total Core	13762	16864	1416K	207
Cyclone IV	12%	15%	36%	78%

Performance	FPGA	Tegra II	
	1080p60 @ 130 MHz	1080p2	

ALTERA Cyclone IV EP4CE115 = low-end 60nm FPGA

Tegra II tablet

ALTERA FPGA board (Terasic)

Video Results

linear scale

[KLHG09]

our result

Conclusion

- Limitations
 - Temporal artifacts
 - Saliency estimation quality
 - No integration into CE products, yet

- But ...
 - Motion estimation
 - Temporal stable saliency (recent work)
 - Meta-information
 - Compression
 - Generalization/extension to more video/graphics applications (STEREO/MV)