## Algorithm and VLSI Architecture for Real-time 1080p60 Video Retargeting



Pierre Greisen ${ }^{1,2}$, Manuel Lang ${ }^{1,2}$, Simon Heinzle ${ }^{\mathbf{2}}$, Aljosa Smolic ${ }^{\mathbf{2}}$


DisNEy Research, Zurich

## What is Aspect Ratio Retargeting?

- 'Clever' change of aspect ratio
- Keep aspect ratio of important parts
- Distort / remove visually not important parts

[Kraehenbuehl 2009]


## Why is Retargeting Relevant



## Discrete Methods

- Remove/Add Pixels
- Related work*:
- Seam Carving [SIGGRAPH 07]

- Improved Seam Carving [SIGGRAPH 08]
- Shift-Map Image Editing [ICCV 09]

[^0]

## Continuous methods

- Find continuous transformation
- Warp/deformation grid
- Related work*
- Non-homogenous warping, ICCV 07
- Streaming video, SIGGRAPH 09
- Shrinkability Maps for ContentAware Video Resizing, PG 09
- Robust Image Retargeting via AxisAligned Deformation, EG 12


Generated with the Streaming Video approach [KRA09]


## This Work

- Contributions:
- Video retargeting
- Efficient warp grid solver
- First real-time implementation (FPGA)
- 1080p60 at low HW resources

- Adaption of [KRA09] warping
- [KRA09] among the best in RetargetME


## Outline

Video Retargeting Algorithm

Hardware Architecture (FPGA)

Results \& Limitations

## Algorithm Overview



## Algorithm Overview



## Visual Importance

- Saliency: where do people look, what is important in an image
- Video: moving objects
- No ‘silver bullet’ (yet?)
- Employed Algorithm:

Guo 08: Spatio-temporal Saliency Detection Using Phase Spectrum of Quaternion Fourier Transform


## Saliency from Phase Information



Original waveform


Reconstruction Result using Phase Spectrum



## Real-time Spatio-temporal Saliency

- 'Video phase': 4 DOF (RGB + motion): Quaternion Fourier transform
- QFT = two 2D FTs
- Hardware efficiency:
- Decompose image in blocks W x H/n
- Saliency estimation per block
- Blocks overlapping
- Normalization



## Algorithm Overview



## Deformation Grid Concept



Linear Scale Example

- Per-pixel deformation value (in pixels)
- Cumulative sum = Position Grid


## 1D Saliency Profiles

- Project 2D saliency onto 1D axes
- Block-maximum as projection operator
- Detect small but salient objects



## 1D Profile as Local Resize Factor

- 1D Profile: Values between 0 and 1
- Profile value for local resizing/downscaling
- Magnification: mirror profile




## How to scale?

- Retargeting constraint (W $\rightarrow \mathrm{W}^{\prime}$ )
- Salient regions: resizing of 1
- Non-linear scaling

- Solve for $\alpha$ (binary tree search)




## Temporal Filtering of the Grid

- Gaussian blur $\rightarrow$ latency
- IIR: $y[k]=a y[k-1]+x[k] \rightarrow$ a constant - Determine 'a' based on scene motion


No Filtering


FIR (Gauss) only


+ IIR


## Algorithm Overview



## Rendering

- Spatially varying warping - EWA forward mapping
- Rectilinear grid:
- Simplified EWA setup

Source image Target image


- Diagonal kernels (ops.)
- Vertical deviations (buffer)
- Hardware-efficient and good quality (AA)



## Algorithm Results

Images from RetargetMe Evaluation, Siggraph Asia 2010


Input

Uniform Crop Linear Scale




SV [KLHGO9]
AA [PWS12]
This Work

## Why Hardware?

- Video retargeting as fixed-function HW core in end-user devices (displays, mobiles, TVs, set-top boxes, ...)
- Low-power @ high resolution
- Real-time capability of HD video retargeting
- FPGA HW Architecture:
- VHDL
- Pipelined stream processing
- 1080p60 performance



## Hardware Architecture

- FPGA board with HDMI, external
 frame-buffer



## Implementation Results

| FPGA <br> Resources | Logic (LUTs) | Register bits | Block RAM | DSP slices | egra II tablet |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Saliency | 8690 | 13571 | 847K | 115 |  |
| Grid Gen. | 993 | 562 | 87K | 12 |  |
| Rendering | 4071 | 2731 | 483K | 80 |  |
| Total Core | 13762 | 16864 | 1416K | 207 |  |
| Cyclone IV | 12\% | 15\% | 36\% | 78\% |  |
| Performance | FPGA |  | Tegr |  |  |
|  | 1080p6 | @ 130 MHz | 1080 |  | TERA F |

## Video Results



linear scale

[KLHG09]

our result

## Conclusion

- Limitations
- Temporal artifacts
- Saliency estimation quality
- No integration into CE products, yet
- But ...
- Motion estimation
- Temporal stable saliency (recent work)
- Meta-information
- Compression
- Generalization/extension to more video/graphics applications (STEREO/MV)


[^0]:    * non-exhaustive

