Power Efficiency for Software Algorithms running on Graphics Processors

Björn Johnsson Per Ganestam Michael Doggett Tomas Akenine-Möller

Overview

- Motivation
- Goal
- Project
 - -Applications
 - -Methodology
- Results
- Observations

Motivation

- Energy efficency increasingly important —Phones, tablets, laptops, desktops...
- Hard area
 - -Harder to analyze than regular performance
 - Need hardware and/or hardware support
 - -Less intuitive / harder to predict

Motivation

- Lots of papers looking at algorithms for power efficient hardware
- What can be done from the software side on current hardware?
- Learn more about energy and power

Goal

- Say we want to optimize to lower energy usage -Do we have to measure power?
 - –Or can we make an estimate based on rendering times alone?

Project

- Two common graphics problems
- Implemented several different solutions solving those problems
- Measure their power usage and rendering time

- Primary visibility and shading
 - -Forward rendering
 - -Forward rendering with pre-Z pass
 - -Deferred shading

- Primary visibility and shading
 - -Forward rendering
 - -Forward rendering with pre-Z pass
 - -Deferred shading

- Shadow algorithms
 - -Stencil shadow volumes
 - -Shadow mapping
 - -Variance shadow mapping

- Shadow algorithms
 - -Stencil shadow volumes
 - -Shadow mapping
 - -Variance shadow mapping

- OpenGL / OpenGL ES
- Full speed (no capping)

–Widely different platforms gives different frame times (5ms to 2s)

- Timestamp at beginning and end of frame —Only integrate over actual rendering time
- Animated camera path (~2000 frames)

Methodology

- We have built a measurement station
 - -Measure at 40kHz
 - -4 ACS710 Hall effect current sensors (<12A)
 - -2 shunt current sensors (<1A)
- Connected between GPU and power source
 Different places on different platforms

Connected on the PCI-Express bus

 Connected on the PCI-Express bus —PCI-Express bus provides <=75W

- Connected on the PCI-Express bus —PCI-Express bus provides <=75W
 - Measured through an Ultraview PCIeEXT-16HOT expander card

- Connected on the PCI-Express bus —PCI-Express bus provides <=75W
 - Measured through an Ultraview PCIeEXT-16HOT expander card
 - -PCI-Express power connectors

- Connected on the PCI-Express bus —PCI-Express bus provides 75W
 - Measured through an Ultraview PCIeEXT-16HOT expander card
 - –PCI-Express power connectors
 - 8-pin provides <=150W
 - 6-pin provides <=75W

- AMD Radeon 7970 (28nm)
- NVIDIA GeForce GTX 580 (40nm)

- Intel Sandy Bridge, HD3000 GPU (32nm)
 - -Connected on motherboards 4-pin power connector
 - Provides power to CPU, GPU, and parts of the memory system
 - -Two runs
 - Rendering pass
 - Idle pass, all gl* calls removed from code

- Rendering pass idle pass = ?
 - -GPU power
 - -Parts of the memory power
 - Memory bandwith generated from the graphics workload
 - Not including memory refresh power
 - -CPU power for driver execution

- iPhone 4S, PowerVR SGX543MP2 GPU (45nm)
 - -Connected on battery connectors
 - Provides power to everything
 - -Two runs
 - Rendering pass
 - Idle pass

- Rendering pass idle pass = ?
 - -GPU power
 - -Memory power
 - Only for memory bandwidth generated from the graphics workload
 - Not including memory refresh power
 - -CPU power for driver execution

- What we measure:
 - -High-frequency power data (40kHz)
 - -Rendering time per frame

GeForce GTX 580

GeForce GTX 580: Primary rendering

27

GeForce GTX 580: Shadows

AMD Radeon 7970: Primary rendering

29

AMD Radeon 7970: Primary rendering 30

iPhone 4S

iPhone 4S

- Higher energy than expected
 - -Mostly due to long rendering times
 - -Probably pushing sort-middle to flush buffers

LUND UNIVERSITY

• What numbers are we interested in?

What other numbers are we interested in?
 –Power

• What other numbers are we interested in?

-Power

-Energy

- What other numbers are we interested in?
 - -Power
 - -Energy
 - More interesting for battery lifetime

- What other numbers are we interested in?
 - -Power
 - -Energy
 - More interesting for battery lifetime
 - But what metric should we use?

nJ/pixel

nJ/pixel

Largely resolution independent

nJ/pixel

- Largely resolution independent
- Easy to divide frame into segments

nJ/pixel

- Largely resolution independent
- Easy to divide frame into segments
- Easy to calculate fillrate for a given TDP

	Primary visibility			
	FR	ZR	DR	
GTX 580	1,443	722	511	
Radeon 7970	607	512	489	
Sandy Bridge	872	314	280	
iPhone 4S	2,234	2,015	-	

	Shadows		
	SV	SM	VSM
GTX 580	1,325	447	532
Radeon 7970	953	469	804
Sandy Bridge	1,317	311	511
iPhone 4S	_	461	_

Observations

- Not possible to estimate power / energy only from frame times
- Surprisingly, pre-Z proved useful on a tiled, deferred, sort-middle architecture for our application

-Pushing too much geometry?

- Still similar energy per pixel, despite rendering times that differ by an order of magnitude or more
- nJ/pixel

Thanks for listening

Any questions?

