
Slide 1

Reducing Aliasing Artifacts

through Resampling

Alexander Reshetov

Slide 2

2/44

Presenting…

I will be presenting… Yet Another Post-Processing Antialiasing Algorithm.
A lot of such algorithms were proposed in recent years, so not only I will have to explain what I did, but
also is why.

Slide 3

3/44

Presenting…

Full Disclosure:
“Rippa Yappa Pari” is
“Paris is Splendid Indeed”
in Japanese

In the interest of full disclosure, “Rippa Yappa Pari”is “Paris is Splendid Indeed”in Japanese and you

could even find this song on YouTube.

Slide 4

4/44

It is All about Sampling

Unless we're talking about some fancy analytical methods, rendering is all about sampling.
I am not talking about this one, but one you could read about in Wikipedia.

Slide 5

5/44

sampling is the reduction of a
continuous signal to a discrete signal

WIKIPEDIA

It is All about Sampling

There are 2 reasons for this:
- Target devices are discrete
- It just makes life easier (similar to wine tasting)

Slide 6

6/44

So, my original idea for the paper was just to say it in the introduction, and then proceed with the main
idea presentation.
But, probably, it would’ve been too extreme. So let’s talk about prior art now.

Slide 7

7/44

No Antialiasing

all values are sampled @ the center
(depth, geometry, textures, etc)

I will introduce key ideas of the new approach after briefly describing the existing techniques and their
limitations.
Sampling everything once per pixel is, obviously, the fastest way, but quality will suffer.

Slide 8

8/44

Supersampling

values are sampled @ multiple locations
(and resulting colors are averaged)

Au contraire, supersampling allows the best quality but rather expensive.

Slide 9

9/44

MultiSampling

is sampled @ subsamples

@ the center

Multisampling is an attempt to get all the advantages of supersampling at a fraction of the cost. It
works nice for direct shading pipeline when the final pixel color is resolved through hardware
acceleration.

Slide 10

10/44

MS Resolve

So if there are only 2 primitives overlapping a pixel, subsamples, obviously, will be split into 2 groups
and

Slide 11

11/44

MS Resolve

shading will be done only once per group.

Slide 12

12/44

MS Resolve

The final color will be computed by blending these 2 colors with weights proportional to coverage.

Slide 13

13/44

MSAA + Deferred Shading

For deferred shading though all subsamples have to be explicitly written to output buffer for later
processing, so it is not very efficient.

Slide 14

14/44

The reason for this is that resolve and lighting computations are noncommutative.

Slide 15

15/44

Morphological Methods

In morphological methods colors are computed once per pixel, and additional knowledge is obtained
from analyzing non-local neighborhood, allowing to reconstruct plausible object silhouettes and then
improve the quality through linear interpolation.
Accordingly, such methods are a good match for deferred shading, and, actually, for any other shading,
since they are independent from the rest of the pipeline.
For this reason, such methods become popular in last few years. Who would knew?
Still, there are some inherent quality limitations, especially in temporal domain.

Slide 16

16/44

Deferred MSAA

It is possible to improve quality by considering additional geometric samples, while still executing
expensive shading computations once per pixel.
The technique I describe today falls into this category.
Another approach to this effect is deferred MSAA, proposed by Matt Pettineo. It works by averaging all
subsamples which depth is significantly different from the depth of the central sample and then
bilinearily interpolating the image in the direction of the average vector.
It is a very simple approach, but it doesn’t scale well with number of samples and it is possible to come
with a better direction of the resampling vector.

Slide 17

17/44

Subpixel Reconstruction SRAA

In sub-pixel reconstruction, all processing is done implicitly, applying cross-bilateral filtering to
upsample per-pixel colors from geometric data.
It is a very interesting idea, but it substitutes a linear block filter with non-linear one in which
coefficients are proportional to geometric difference between subsamples, expressed numerically.

Slide 18

18/44

AA Taxonomy
legend:
sampling
rate per
pixel

x:

many

a l l

∞

You could read more about various post-processing antialiasing methods in the last year’s Siggraph course. I have also included all those
algorithms, and a few new ones, into this convoluted table. To my surprise, reviewers did not object to this table excessively, so it is now
official.

Please don’t try to read too much into this table: it is more like an art rather than a science.

Basically, I am using shades of gray to indicate typical sampling rates for a number of entities required for antialiasing computa­tions.

A white color stands for a single sample per pixel and then it scales up to a black color for many subsamples.
It is not quite 50 shades of grey, but a lot.

This table just illustrates the fact that all of these values can be sampled at different rates. And it also improves the Hirsch citation index
for all these papers.

Slide 19

19/44

Introducing Resampling Antialiasing

• A low-cost clustering

• Pre-computed lookup table

• Tuning

• Bilinear sampling

bitmask = 00011100;

static const float2 uvt[];

pos += scale(neigborhood) * uvt[bitmask];

color = img.Sample(LinearSampler, pos/size);

The algorithm I present today requires splitting all subsamples in pixel into 1 or 2 groups. The resulting
binary mask is then used to retrieve filtering coefficients from the precomputed lookup table.
All this processing is done inside the pixel. There is also an optional tuning step, adjusting the
coefficients by considering local neighborhood.
The last step of the algorithm is just bilinear interpolation.

Except this, all other steps are original and I will describe them now.

Slide 20

20/44

Clustering Algorithm
• Input: geometric subsamples

(and dissimilarity function)
• Output: clustering into 1 or 2 groups

• Naïve approach: thresholding

subsamples

d
is

si
m

ila
ri

ty
 v
s

ce
n

te
r

threshold

subsamples

d
is

si
m

ila
ri

ty
 v
s

ce
n

te
r

The clustering is based on considering the dissimilarity between all subsamples and the center of the
pixel, expressed numerically.
Naïve approach would be to just split everything by comparing these values with a predefined
threshold.
It is not the best possible approach, as illustrated on this figure.

Slide 21

21/44

• Our approach: one iteration of k-means

Clustering Algorithm
• Input: geometric subsamples

(and dissimilarity function)
• Output: clustering into 1 or 2 groups

subsamples

d
is

si
m

ila
ri

ty
 v
s

ce
n

te
r

subsamples

d
is

si
m

ila
ri

ty
 v
s

ce
n

te
r

data-dependent threshold

This is one of the most typical problems in science, and there are multiple ways to do it. One of the
most widely used is k-means. It is good, but expensive, requiring multiple iterations.
So what we do is restrict ourselves just to one iteration.

Slide 22

22/44

Dissimilarity Function

To cluster subsamples, we need a mechanism to measure dissimilarity of 2 subsamples… without using
colors.

Slide 23

23/44

Geometric Similarity

d1 d2

(a)

But we still can use geometry.
One popular approach is to compare depth of two samples, assuming that if depth is significantly
different, subsamples belong to different objects. It is very simple, but may fail in corners, as shown on
this image.

Slide 24

24/44

Geometric Similarity

n1

n2

(b)

Corner detection could be resolved with a measure that uses subsample normals – for example, their
dot product. However, this measure will not be able to distinguish spaced-out almost-parallel surfaces.

Slide 25

25/44

Geometric Similarity

n2n1

r12

(c)

p2p1

sadp(n1, n2, r12) = (|n1 ∙ r12| + |n2 ∙ r12|) / length(r12)

And finally a new measure which we propose. It is a sum of the absolute dot products of two normals
and a normalized vector from one subsample to another. It addresses problems of other measures; it is
symmetric and does not depend on camera position.

Slide 26

26/44

Sad P

We call it SADP and, since it can be used in other computer science disciplines, I created this clipart to
help you remember it better.

Slide 27

27/44

• A low-cost clustering

• Pre-computed lookup table

• Tuning

• Bilinear sampling

bitmask = 00011100;

static const float2 uvt[];

pos += scale(neigborhood) * uvt[bitmask];

color = img.Sample(LinearSampler, pos/size);

Now we have an index, so we need an array to index into.

Slide 28

28/44

• Why?

– The set of all bit combinations is finite

→ The solution can be precomputed

• Saves run-time computations and

• Allows to be thorough

• How?

– just learn it…

Lookup Table (for filtering offsets)

The set of all bit combinations is finite, so it is possible to precompute all possible solutions. It will save
run-time computations, and will allow us to be thorough.

We still don’t know how to solve this problem, but we can learn it.

Slide 29

29/44

Lookup Table (for filtering offsets)

Not quite like this but close.

Slide 30

30/44

Using Machine Learning

 =

We use a simple training data set, for which anti-aliasing can be done analytically, and for each bit
combination find offset vector which minimizes average error for the training data.

Slide 31

31/44

• A low-cost clustering

• Pre-computed lookup table

• Tuning

• Bilinear sampling

bitmask = 00011100;

static const float2 uvt[];

pos += scale(neigborhood) * uvt[bitmask];

color = img.Sample(LinearSampler, pos/size);

This will result in a good solution which can be further improved by looking into local neighborhood.

Slide 32

32/44

Why We Need It

dissimilarity(green, red) > dissimilarity(green, blue)

6
4

5

3

1

2

7

0

C

A B

D

Let’s talk why it may be necessary. We have 2 small triangles overlapping a given pixel. By looking on
the pixel subsamples, we decided to interpolate the final color at the position defined by the black
vector. We were hoping that samples in this direction are representative of green subsamples, which is
not true. It will result in blending of blue, red, and a little bit of green, which is not what we need.

Slide 33

33/44

Option 1: Pre-processing Tuning

6
4

5

3

1

2

7

0

C

A B

D

We can fix this situation by using SADP measure. One way is to compare green subsamples with closest
outside samples and keep only ones which have their matches (it will be subsample 2).
This requires extra work, which is unnecessary if pixel is not resampled.

Slide 34

34/44

Option 2: Post-processing Tuning

6
4

5

3

1

2

7

0

A B

DC

Another approach is to make sure that SADP difference between blue and red samples is greater than
the difference between blue and green subsamples and adjust the sampling vector if this is not the
case. This can be done once we already decided to resample the pixel, so it is a little bit faster with a
tidbit worse quality.
Both tuning methods help improving peak signal to noise ratio by up to 3 dB.

Slide 35

35/44

MLAA Artifacts

Let’s talk about artifacts. This picture shows 4 antialiasing methods side by side. Let’s first look on
MLAA issues. The right pupil looks OK by itself but it is very different from the correct shape. It is
because MLAA hallucinates silhouettes due to lack of any more detailed data. It is bad in spatial and
especially temporal domain, resulting in flickering.

Slide 36

36/44

RSAA Artifacts

RSAA problems are most noticeable when its assumptions are broken, and there are more than two
distinct surfaces overlapping a pixel.

Slide 37

37/44

Quality Comparison

Average peak signal-to-noise ratio wrt 64X SSAA

No antialiasing 36.15

MLAA 41.70

4X MSAA 44.56

RSAA 47.44

8X MSAA 48.63

Overall, RSAA allows about 10 decibel quality improvement, compared with 5 for MLAA.
Generally, RSAA is a little bit worse than MSAA which uses the same number of subsamples.

Slide 38

38/44

When Things are Breaking Down

30

35

40

45

50

55

0 50 100 150 200 250

30

35

40

45

50

55

0 50 100 150 200 250

noAA MLAA 4x MSAA RSAA 8x MSAA

There is one noticeable exception. When there is lot of incoherent subpixel geometry, RSAA quality
nosedives, while still exceeding one for MLAA. Just by looking on this chart, it is possible to identify the
moment of collision.

Slide 39

39/44

6
|

7
|

8
|

9
|

10
|

Performance vs Quality

8 subsamples
SADP
tuning

-0.2

-0.4

-0.6

quality improvement (dB)

p
er

fo
rm

an
ce

 p
en

al
ty

 (
m

s)

4 subsamples
SADP
tuning4 subsamples

depth
tuning

4 subsamples
depth

NVIDIA® GeForce® GTX 580 at 1280x720 resolution

ML
AA

At highest settings, RSAA allows about 10 decibel quality improvement, taking 0.6 milliseconds on 580.
If we use only 4 subsamples, quality will go down by 2 decibel, saving about 0.4 milliseconds.
We will not safe much by using depth test instead of SADP, but will loose in quality.
And, it doesn’t make much sense avoiding tuning either.
The performance data in this chart excludes the time required for computing and storing per-pixel
normals, which we assume could be a part of the deferred shading pipeline anyway. My
implementation of this feature takes about 0.25 ms.
 And, for comparison, MLAA will be right about here at blue blub (using Jorge Jimenez implementation).

Slide 40

40/44

Graphics Pipeline

scene data

graphics pipeline

framebuffer
image-based
processing

On the other hand, MLAA is completely orthogonal to graphics pipeline.
During rendering, a 3D scene description is converted to 2D image, as alluded on this chart.

Slide 41

41/44

scene data

graphics pipeline

framebuffer

deferred shading
pipeline

image-based
processing

scene data

Deferred Shading

post-processing AA

In deferred shading, some of the processing, well, is deferred till the last stage, allowing greater artistic
freedom is scene composing and lighting.
Post-processing anitaliasing techniques are a natural match for deferred shading, since they are
completely orthogonal to the rest of the pipeline.

Slide 42

42/44

deferred shading
pipeline

image-based
processing

scene data

geometry pre-pass:
filter coefficients

post-processing AA

RSAA pipeline

Technique, which I presented today, introduces an additional pre-processing stage, at which filter
coefficients are computed. These coefficients are then used at a post-processing stage to antialias the
final image.

Slide 43

43/44

Conclusion

• 8X increase in the geometry sampling rate
allows noticeable improvements in quality
at a reasonable cost

• RSAA components

– SADP measure

– Fast adaptive clustering

– Machine learning approach

– Tuning of filter coefficients

– Example of Direct X pull mode attribute evaluation

It is indeed possible to improve quality by considering additional geometric samples but still shading
only once per pixel.
RSAA includes some features which could be used in other computer science disciplines.
I did not discuss the last component here and ordinarily I wouldn't advice relying on my Direct X code,
since I am opposite to an expert in this area. However, there are simply no other examples of using the
pull mode evaluation on the Web and it is a rather kinky concept.

Slide 44

44/44

Acknowledgments

