# Adaptive Image Space Shading for Motion and Defocus Blur

Karthik Vaidyanathan<sup>1</sup> / Robert Toth<sup>1</sup> / Marco Salvi<sup>1</sup> / Solomon Boulos<sup>2</sup> / Aaron Lefohn<sup>1</sup>

<sup>1</sup> Intel Corporation / <sup>2</sup> Stanford University





# What is this talk about?



#### 43% shading (our method)





# Overview

• Part I: Introduction to 5D

• Part II: Frequency analysis

• Part III: Results





# Overview

• Part I: Introduction to 5D

• Part II: Frequency analysis

• Part III: Results





# **5D stochastic rasterization**

- Test if a primitive is covered at:
  - Different points on the screen (x, y)
  - Different points on the aperture (u, v)
  - Different time instants (t)





# **5D stochastic rasterization**

- Lots of samples per pixel are needed to eliminate noise
  - We do not want to shade all of them individually (super sampling)
  - We base our work on decoupled sampling
     [Ragan-Kelley et al. 2011]





# **Example: motion blur**







# Super sampled shading













- Define shading space
  - Fixed point on the aperture and in time
  - Shade once per "pixel"

Re-project samples to shading space
 Map to a "pixel" and reuse shaded color

- Implemented using a memoization cache
  - [Ragan-Kelley et al. 2011]





- Q: Can we shade even less than once/pixel?
- A: Yes!





# Overview

• Part I: Introduction to 5D

• Part II: Frequency analysis

• Part III: Results





# **Frequency analysis**

- Objective: derive bounds of "useful" frequencies
  - Frequencies contributing to image

Contains lots of approximations!
 Aim is real-time good-enough quality

• Will not go into detailed equations





 Surface contribution to pixel color is an integral over P:=[x,y,u,v,t]:

- Color +=  $\int LASRVdP$ 

- L: radiance
- A: aperture
- S: shutter
- R: pixel filter
- V: visibility





• Simplify: separate visibility

 $-\operatorname{Color} += \sum (\int L A S R dP_i V(P_i))$ 

L: radiance A: aperture S: shutter R: pixel filter V: visibility

Approximation #1: visibility does not alter surface filtering





Approximate with decoupled sampling

```
L(x,y,u,v,t) \approx L_0(x_0(x,y,u,v,t), y_0(x,y,u,v,t))
Approximation #2:
decoupled sampling at a
single aperture location and
a single instance in time
```





• Approximate the decoupled shading space

$$x_0 \approx x - t \mu_x - u \phi$$

Approximation #3: primitive moves at constant shading-space velocity

Approximation #4: locally constant defocus radius





• What did we gain by doing that?

 $-O(x,y) = L_0^*A^*S^*R$ 

L: radiance A: aperture S: shutter R: pixel filter

• Transform into frequency domain:

$$-\widehat{O} = \widehat{L}_{0} \widehat{A} \widehat{S} \widehat{R}$$





# **Example spectra**







# Observation

 Smoothing the aperture filter a little can narrow the frequency range a lot

Applies to the shutter as well





# Band limited shading space <sup>22</sup>

Safe to low pass filter L<sub>0</sub> outside spectral support of A, S, R:

 $-\widehat{O} = \widehat{L}_{O} \widehat{A} \widehat{S} \widehat{R} = \widehat{L'} \widehat{A} \widehat{S} \widehat{R}$ 

L: radiance A: aperture S: shutter R: pixel filter

 How to actually band limit L' is \_not\_ the focus of our work





• A primitive has:

- Varying amount of defocusVarying velocity
- How do we derive bounds for  $\widehat{A}$ ,  $\widehat{S}$  ?





Varying amount of defocus:

- Use the smallest circle of confusion



- Varying speed and direction:
  - Use the lowest speed
  - Enclose all motion directions









- Putting it all together
  - Enclose all motion directions
  - Use the lowest speed
  - Use the smallest circle of confusion
  - Bound with motion-aligned bounding box



# Sampling and reconstruction <sup>28</sup>

• Shader knows how to filter itself

- Sample spacing d  $\rightarrow$  frequency limit  $\omega = 0.5/d$ 

• We want a specific frequency limit

- Reverse the logic,  $d = 0.5/\omega$ 





# The shading grid

29

 $d_x = 0.5/\omega_1$ 

 Shading grid orientation determines band limit orientation – align grid to frequency bounds

 $\Omega_{x}$ 

S

 $\omega_{7}$ 

• Several steps to final image:

– Our algorithm: determine shading grid

- Shader: compute band limited surface color
- Visibility engine: sample shading space





# Overview

• Part I: Introduction to 5D

• Part II: Frequency analysis

• Part III: Results





• All shading rates with previous work:

– Memoization cache capacity = 1k quads

• All shading rates with our algorithm:

– Memoization cache capacity = 64 quads





• Citadel scene

#### DS (prev. work)

AAS (our)















SubD11 scene
 DS (prev. work)

#### AAS (our)















• Arena scene

#### DS (prev. work)

#### AAS (our)

















• Cost:

– Approximately 100 ops per triangle

- 500k triangles @ 60Hz = 3 GFLOPS (0.1% of high-end GPU)





# Conclusions

- We have developed a low-cost technique for determining a blur-aware shading grid for decoupled sampling.
- Benefits:
  - Reduced amount of shading
  - Smaller decoupling cache size
  - Less noise due to low-pass filter
  - No major changes to the decoupled sampling pipeline





# **Questions?**

• Thanks to:

- Aaron Coday, Charles Lingle, Tom Piazza, for supporting this research
- Intel Advanced Rendering Technology team, for valuable feedback



