Delaunay Triangulation Problem Let $T(P)$ be a triangulation of a given 2-D in in set $A(T(P))=\left\{a_{i}, i=1,2, \ldots, 3|T(P)|\right\}$. Let I $L_{A(T(P))}$ be the sorted, in ascending order, angle list of $T(P)$ triangulation. Then the Delaunay Triangulation $T(P)$ can result from the solution of the following optimization problem

$$
T_{D}(P)=\operatorname{lex} \inf _{T(P)} L_{A(T(P))}
$$

i.e. DT constitutes the lexicographic infimum over all angle lists formed from the triangulations of the given point-set P.

Characteristics of our approach

- Exploits the high parallelism offered by GPU while simultaneously runs exclusively on GPU under the guidance of CPU, but with
GPU.
- Enjoys performance which is almost independent from the distribution of the point-set.
- Reduces the necessary memory footprint by using the classical geometric data structure "half-edges", which is widely used in CPU-based implementations of many computational geometry algorithms.

Algorithm Overview

Partitioning obtained from the application of the proposed algorith ($\operatorname{step} \mathrm{S}_{1}$) on a Gaussian and mixture of Gaussian distributed point sets.

Partitioning of the given 2-D point-set P in a specified number of subsets. Each a specifis sor accond

S_{2} : Delaunay Triangulation of each -by using an order recursive insertion algo rithm tailored to exploit both GPU architec-
ture and the special form of the sequence of the insertion problems imposed by Step S_{1} of the algorithm.

The Delaunay Triangulation $T_{\text {o }}$ of the $V_{k l}$ subsets after the application of step S_{2} of the proposed algorithm.
$S_{3}:$ Merging of the vertical subsets in each horizontal zone. This step is implemented by mapping all the vertical subsets of each horizontal zone onto a corresponding binary tree whose depth specifies the complexity of this specific step. As it is clear, this complexity is an incardinality of subsets. S_{4} : Merging of the horizontal zon
applied onto the horizontal zones.

from the

$$
\begin{aligned}
& \text { The vertical merging of the triangulated regions of horizontal zones and the horizontal merging obtained } \\
& \text { from the application of step } S_{3} \text { and } S_{4} \text { of the proposed algorithm. }
\end{aligned}
$$

Experimental Results

We have applied the proposed algorithm, and its rivals, in a number of uniformly and non-uniformly dis tributed point sets with their cardinalities ranging from 50 K up to 1 M points. The performance of the proposed algorithm in terms of running time needed for the formation of the optimum set $T_{D}(P)$, clearly outperforms CPU-based, as well as, state of the art GPU-based implementations of DT algorithms.

