Towards an Exapixel per Second: Enabling Efficient Visual Data Analysis at Scale

Kayvon Fatahalian
Carnegie Mellon University

(After six years at CMU I will be moving to Stanford in Sept 2017)
Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)
The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)
The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)
marcation. Neither the core X renderer nor OpenGL support this notion of frame de-
can begin. This substantially increases the system's latency, and all primitives must be transformed and sorted before rasterization.

Appendix 2.) Finally, if primitives must be rendered in the order for geometric specification, so this is a significant bottleneck. (See...nottable to the final display buffer, the final image is assembled as a sequence of fragment/pixel pairs. The crossbar in this architecture is the composit-

architecture. The RealityEngine Triangle Bus is a crossbar between the geometry processors and the fragment generation processors. The RealityEngine Triangle Bus is used to transfer the contents of rasterized tiles to a final display buffer. Because the framebuffer associated with each processor is small, the final image is assembled as a sequence of fragment/pixel pairs. The crossbar in this architecture is the composit-

SGI RealityEngine GE8 board (1993)
Real-time (30 fps) on a NVIDIA Titan X
2B shares per day across Facebook sites (includes Instagram+WhatsApp) [FB2015]

Youtube 2015: 300 hours per minute uploaded [Youtube]

80-90% of 2019 internet traffic will be video [Cisco VNI]
Ubiquitous image sensing and analysis
Analyzing images for robot navigation
Analyzing images for urban efficiency

“Managing urban areas has become one of the most important development challenges of the 21st century. Our success or failure in building sustainable cities will be a major factor in the success of the post-2015 UN development agenda.”

- UN Dept. of Economic and Social Affairs
Analyzing images for urban efficiency

Use of image analysis to identify:
- Dangerous intersections
- Infrastructure needing repair (Pittsburgh potholes!)
- Flooding / ice
- Air-quality monitoring

...
Analyzing egocentric images to augment humans

What does this say?

What is this?

Gwangjang Market (Seoul)
The visual data world in 2030

<table>
<thead>
<tr>
<th>8.5 billion people (61% urban)</th>
<th>70% smartphone penetration</th>
<th>25% turned on</th>
<th>→ 1.5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[UN estimate]</td>
<td>[Statista, 50% in 2020]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2 billion cars | 8 cameras/car | 25% load | → 4B |
| [Sperling 2009] | | [currently 2%]| |

1.1B streaming security cameras
Extrapolation from 245M in 2014, 10% annual growth [IHS]

Assume 8K video resolution (33 megapixel)

Total capture capability across the world

~6.5B video streams = 2.1 x 10^{17} pixels x 30 fps = 6 exapixels/sec

Other considerations: home health care robotics, survey science, infrastructure monitoring…
How do we architect efficient (and easy to program) systems for analyzing the worldwide visual signal?
Challenge: compute-intensive, pixel processing algorithms

Need: Efficiently map image analysis algorithms to (specialized) accelerated computing platforms ("use every op you can get")
Challenge: large scale of visual data to acquire, store, and analyze

Need: distributed computing platforms for productive use of heterogeneous, accelerated computing hardware at datacenter scale
Challenge: brute-force nature of many widely used techniques

Need: performance-centric algorithmic innovation

How can systems automatically approximate programs by eliminating redundancy, using intelligent filtering, inducing sparsity, adaptive techniques, etc.?

<table>
<thead>
<tr>
<th>Model</th>
<th>ImageNet Top-1 Accuracy</th>
<th>Num Params</th>
<th>Cost/image (MADDs)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG-16</td>
<td>71.5%</td>
<td>138M</td>
<td>15B</td>
<td>[2014]</td>
</tr>
<tr>
<td>GoogleNet</td>
<td>70%</td>
<td>6.8M</td>
<td>1.5B</td>
<td>[2015]</td>
</tr>
<tr>
<td>ResNet-18</td>
<td>73% *</td>
<td>11.7M</td>
<td>1.8B</td>
<td>[2016]</td>
</tr>
<tr>
<td>MobileNet-224</td>
<td>70.5%</td>
<td>4.2M</td>
<td>0.6B</td>
<td>[2017]</td>
</tr>
</tbody>
</table>

* 10-crop results (ResNet 1-crop results are similar to other DNNs in this table)
Challenge: authoring complex image analysis applications

How can frameworks encourage desirable program structure: modules, interfaces, etc. in the context of end-to-end optimization

What are primitives for analyzing databases of images, videos, or analyzing scenes? (“SQL for visual computing?”)
Big visual computing systems needs

1. Techniques for efficiently mapping image analysis algorithms to accelerated computing platforms
 (Efficiently generating kernels for CPUs, GPUs, FPGAs, ASICs)

2. Distributed computing support for scalable accelerated computing
 (Connecting efficient processing pipelines to data stores, distribution across many machines)

3. Performance-centric algorithmic innovation/approximation
 (New work efficient algorithms and approximations)

4. Good abstractions for authoring scalable visual data analysis applications
 (Considering higher-level primitives for authoring future applications e.g., SQL for video DBs?)
Motivating question

If I wanted to grab a few terabytes of video, store it in a database, and perform pixel-level analyses on frames from the collection using a cluster of high-compute-density nodes, what system should I use?
“KrishnaCam” egocentric video dataset

72 hours of recording over nine months: (Sep 2014 – May 2015)

Google Glass

[Singh 2016]
How does the world evolve?

1. Change in companion
2. Change in object location (bike rack moved)
3. Change in object (different parked cars)
4. Change in season
5. Change in time of day (lighting conditions)
Life-specific data compression: KrishnaCam novel data growth
How much new visual data is observed as recording continues?

Fraction of Frames that are "Novel"

Hours of Recording
Ensemble of face detectors for KrishnaCam
Ensemble of face detectors for KrishnaCam
Sensing human social interactions

CMU Panoptic Studio
480 video cameras (640 x 480 @ 24fps)
147 MPixel video sensor
(3.5 GPixel/sec)

[Joo 2015]
Application: capturing human social interactions

40-second sequence (captured human social interactions)

3D pose reconstruction time: hand-coded solution by grad student — 7 hours on a 4-Titan Xp machine

[Cao 2016]
Cinematography analysis
Collaboration with Alex Hall, Maneesh Agrawala (Stanford)

What is the average length of shot in a movie?

Does the director favor close ups or wide shots? How much camera motion is used?

What are the main color palettes in the film?

How do these traits vary across films or time?

“Star Wars Episode IV: a New Hope”
Segmented into shot boundaries based on image histograms
Workload characteristics

- **Large video collections (100’s GBs-to-TBs compressed)**
 - Decompress and deliver pixels efficiently to compute units

- **Basic data-parallel operations (map, scan), often performed on sampling of frames**
 - Analytics-style computations: not tightly coupled, latency sensitive global communication typical of ML model training

- **Efficient pixel processing pipelines utilize kernels from expert-tuned libraries, generated by DSLs**
 - e.g., Halide, DNN inference using Caffe, OpenCV, MKL
 - complex “UDFs” that are already parallelized, run most efficiently on accelerators
Alternatives

- Distributed data-analytics frameworks
 - [Hadoop, Spark]

- Array/raster databases
 - [SciDB, RasDaMan, GIS databases]

- Distributed machine learning frameworks
 - [TensorFlow, MxNet, CNTK]

- Emerging closed systems for “vision as a cloud service”
 - Google Cloud Vision API
 - Microsoft Cognitive Services API
 - feature turnkey solutions for object classification, face detection, motion detection, OCR, stabilization, inappropriate content filtering
Efficiently delivering video data to GPU/ASIC accelerated pixel-processing pipelines:

Scanner: efficient video analysis at scale

with Alex Poms (CMU), Will Crichton (Stanford), Pat Hanrahan (Stanford)
Design goals / principles

Design principle 1: keep it simple
- Enable non-expert programmers (vision researchers, visual data analysts) to rapidly develop and deploy video analysis applications at cloud scale

Design principle 2: be efficient
- “Near-HW-peak single-node perf” then scale out
- Utilize heterogeneous hardware: ASICs for video encode/decode, run kernels on multi-core CPUs, GPUs, future DNN accelerators

Non goals:
- Do not be a new kernel description language
- Interoperate with state-of-art 3rd-party kernel libraries and kernel code generated from existing DSLs
Setup

I have a list of videos in a directory…
myvideos/cam000.mp4
myvideos/cam001.mp4
myvideos/cam002.mp4
...
myvideos/cam479.mp4

And I have a library of parallel pixel processing kernels for CPUs and GPUs:

- Image crop/rescale (Halide)
- Depth from disparity (Halide)
- Optical flow (OpenCV)
- Eigen (C)
- Video Tracker (CUDA)

Caffe DNN Eval

- Human Pose estimation [Cao16]
- Object detector [Redmon16]
- Face detection network [Hu17]
- Depth/normal estimator [Bansal17]

...
Represent videos as relations (tables)

myvideos/cam000.mp4
myvideos/cam001.mp4
myvideos/cam002.mp4
...
myvideos/cam479.mp4

Ingest into Scanner...

Scanner dataset: capture_session
Computations: DAGs of image processing operations

Pipeline kernels map to heterogeneous resources: CPUs, GPUs, ASICs
Scanner maps pipelines onto a stream of video frames from tables

Pipeline:

Input: cam_000
Output: pose_000

Input:

<table>
<thead>
<tr>
<th>id</th>
<th>frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>2dpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 1 2 3 ...

Parallel execution in Scanner

cam000.mp4

Node 0: multi-core CPU + GPU
- I/O
- GPU HW Decoder
- Resize Instance 0
- DNN Eval Instance 0
- Estimate Pose Instance 0

Node 1: multi-core CPU + 2 GPUs
- I/O
- GPU HW Decoder
- Resize Instance 1
- DNN Eval Instance 1
- Estimate Pose Instance 1
- I/O
- GPU HW Decoder
- Resize Instance 2
- DNN Eval Instance 2
- Estimate Pose Instance 2
A simple Scanner program

```python
import os

db = scanner.Database()
videos = os.listdir('/myvideos')
video_tables = db.ingest_videos(videos)

jobs = []
for table in video_tables:
    resized = db.ops.Resize(
        frame = table.column('frame').all(),
        width = 496,
        height = 368,
        device = GPU)
    activations = db.ops.DNN(
        frame = resized,
        model = 'cpm.prototxt',
        batch = 8,
        device = GPU)
    poses = db.ops.PredictPose(
        activations = activations,
        device = CPU)
    jobs.append(Job(columns = [poses],
                     name = 'poses',
                     output_filter = stride(2))
    )
pose_tables = db.run(jobs)
```
Scanner data-parallel operators

Map (with element batching)

- Batch frames together during processing (efficient mini-batch kernels, e.g., DNNs)

Temporal Stencil

- Temporal Stencil + Stride
- Sparse output + stencil (e.g., optical flow on every 30th frame)

Multi-video Join

- Processing that requires multiple videos (e.g., depth estimation from disparity)
Challenges unique to video domain

1. Striding/gathering frames from compressed video streams

2. Temporal dependencies in common video processing operations

Object tracking (stateful)

![Object tracking](image)

Activity recognition (must observe long sequence of frames)

![Activity recognition](image)

[Ma 2016]
Choosing a video storage format

16 core Xeon GPU + 1 Titan Xp GPU
1920x1080 video

CPU JPG decode (19 GB)

CPU-decode-video: (1.1 GB)
GPU-decode-video: (1.1 GB)

- small-gop (1.2 GB)
- sample + reencode

Effective Frame Throughput (fps)
Scanner maintains index of keyframe locations to enable work-efficient parallel, gathered decode.
Importance of well-optimized video decode

Decoded Frame Throughput (1080p)
(Relative to expert hand-tuned implementations)

CPU = 16-core CPU
GPU = Titan Xp

Scanner (with keyframe index)
Baseline (off-the-shelf libraries and tools)
Handling temporal dependencies in video processing

Two-level stream hierarchy: applications partition jobs into "tasks" (Scanner ensures all elements in task are scheduled serially on same pipeline)

Examples of stateful execution:
object tracker carries frame-to-frame state,
activity recognition must observe long sequence of frames
Handling temporal dependencies in video processing

Tasks can receive “warmup” stream elements to initialize state. Pipeline generates no output for these elements. (redundant computation across tasks to facilitate parallelism)

Intuition for warmup:
When “influence” of state is relatively local in time, warmup allows parallel execution with little change in output values.

e.g. provide task additional 30 frames to initialize object tracker.
Preliminary results
Single node: scanner has low overhead

Relative Throughput

Single Node Throughput:
Relative to Manually Hand-Tuned Implementations
Scaling to 2 machines (8 GPUs)

<table>
<thead>
<tr>
<th>Function</th>
<th>CPU Throughput</th>
<th>GPU Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histogram</td>
<td>5586 fps</td>
<td>424 fps</td>
</tr>
<tr>
<td>Optical Flow</td>
<td>424 fps</td>
<td></td>
</tr>
<tr>
<td>Gather</td>
<td>54 fps</td>
<td></td>
</tr>
<tr>
<td>DNN Eval</td>
<td>2520 fps</td>
<td></td>
</tr>
</tbody>
</table>

16-core CPU, GPU=Titan Xp
3D human pose reconstruction

Processing 40 seconds of video from CMU Panoptic studio

Grad student hand-tuned: 7 hrs (1 node x 4 Titan Xp GPUs)
Scanner: 2.6 hrs (1 node x 4 Titan Xp GPUs)
Scanner on cluster: 38 mins (4 node x 4 Titan Xp)

Approaching viability for extended capture sessions.
Shot segmentation (cinematography analysis)

608 feature length films (2.4 TB)
103M frames
Histogram-based shot segmentation of all films: 4.7 hrs (4 node cluster, 4 GPUs/node)
Facebook Surround 360 VR video generation
(omnidirectional stereo VR video)

2048 x 2048 PointGrey Camera @ 30 FPS

14 cameras
8K x 8K stereo panorama output = 12.5 secs per frame on 32-core CPU

Preliminary Scanner results:
Single node (32-core CPU)
- 5 secs / frame

Multi-node on Google Compute Engine
(8 x 32-core nodes)
- 0.7 secs/frame
Scanner

- Open source compute engine for high-performance cluster-scale video analytics (attacks platform/infrastructure needs)
 - Integrates high performance video delivery to heterogeneous accelerated computing pipelines

- Hope: influence design of current future distributed systems
 - Spark/Hadoop ecosystem
 - APIs for cloud-based video analysis services (Microsoft Cognitive Services API, Google Cloud vision API, NVIDIA Intelligent Video Analytics)
Ongoing: American TV news analysis

- Dataset provided by Internet Archive
- 9 months of US election coverage (2012, 2016) on CNN, FOX, MSNBC
- 6.6 TB, 18,000 hours of video, 1.5 billion frames

Fareed Zakaria GPS
CNN Newsroom
Situation Room
CNN Newsroom with Poppy Harlow
The Lead with Jake Tapper
America News Headquarters
The Five
The Real Story With Gretchen Carlson
Shepard Smith Reporting
On the Record With Brit Hume
Inspiration

Geena Davis Inclusion Quotient (GD-IQ)
- Project between Google and The Geena Davis Institute on Gender in Media
- Uses computer vision to search for gender bias in blockbuster films

Men are **seen** and **heard** nearly twice as often as women

Women are seen on-screen more than men only in one film genre: **horror**

<table>
<thead>
<tr>
<th>Genre</th>
<th>% of Women on-screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horror</td>
<td>53%</td>
</tr>
<tr>
<td>Romance</td>
<td>45%</td>
</tr>
<tr>
<td>Comedy</td>
<td>40%</td>
</tr>
<tr>
<td>Sci-Fi</td>
<td>36%</td>
</tr>
<tr>
<td>Drama</td>
<td>34%</td>
</tr>
<tr>
<td>Action</td>
<td>29%</td>
</tr>
<tr>
<td>Biography</td>
<td>30%</td>
</tr>
<tr>
<td>Crime</td>
<td>23%</td>
</tr>
</tbody>
</table>

Visual data mining process

100 hours (10 hours from each of 10 shows)
Sampled at 2 fps (every 12th frame) - 70K frames

MTCNN for face detection [Zhang 16]
“Rude Carnie” DNN for gender ID [Levi 16]

Refine filtering to include only the large faces
Detection score > THRESHOLD1 && bbox_area > THRESHOLD2
Endless opportunities for innovation...

- **Performance-centric algorithm innovation**
 - Approximate high-quality detectors with cheaper ones
 - Manually via intelligent topology simplification?
 - Automatically via replacement or topology search?
 - Multi-resolution and/or adaptive detection techniques
 - **What are most important frames to pay attention to in 18,000 hours of video?**
 - Exploiting temporal coherence
 - Use results of prior frames to accelerate future processing

- **Future hardware acceleration**
 - Need for DNN acceleration widely recognized
 - ASIC video decoder interfaces might wish to support strided/gathered access
Endless opportunities for innovation…

How to express visual data mining queries?
- What is SQL for video or scenes?

“Three cups to the left of the blue cup” [Ma 17]

\[
\text{count(left(filterbycolor(detect(cup), blue), detect(cup)))} = 3
\]

Sample tree-structured question:

```
        \text{Filter color}
        \downarrow
        \text{green}

        \text{Unique} \\
        \downarrow \\
        \text{left}

        \text{Relate} \\
        \downarrow \\

        \text{And} \\
        \downarrow \\
        \text{Filter shape}

        \downarrow \\
        \text{cylinder}
```

How many cylinders are in front of the small thing and on the left side of the green object?
CMU urban video analytics testbed
+ Streamer
CMU urban video analytics testbed

Deployment of high-resolution cameras and edge compute nodes on campus at CMU and across a new city blocks nearby campus

Industrial computer vision cameras (emits RAW pixels)

Compute node

More details at: urbanvideo.cs.cmu.edu
Video analytics node

Significant compute capability on the near-camera node

PoE Gigabit ethernet switch (power/data to cameras)

Intel NUC / NVIDIA Tegra X1

1-2 TFLOPs of image processing hardware per node

Wi-fi antenna
Cameras

Max resolution: 2.4 MPixel
Up to 60 fps
Emits RAW pixels (uncompressed video signal)
Inside windows

One Intel NUC per camera
Intel Gen 9 Integrated graphics + media decode
Year 1 (~end of 2017)
Urban video analytics testbed goals

- Be a “living laboratory” for research in cloud-to-edge systems, computer vision, security, privacy, urban computing
 - Provide open platform for deploying streaming applications at scale
 - Facilitate easy deployment of applications to 10’s-100’s of cameras

- Tackle issues of privacy and policy head on
 - Start with small deployment, then grow
 - One output of project will be policy and technology guidelines for responsible capture, use, and retention of urban video data
Urban video analytics testbed: use cases

TRANSPORTATION / CITY DYNAMICS

Vehicle/pedestrian/bicyclist trajectories

Notable “event” counting: bike near bus, near collisions, pedestrian unexpectedly entering street

Detailed statistics of human and vehicle behavior at intersections (for autonomous vehicle development and training)

External validation of autonomous vehicle positioning/decision making

CLIMATE / ENVIRONMENTAL MONITORING

Air-quality estimation from video data

Per-vehicle pollution estimation (based on analysis of exhaust)

Frozen road detection

PUBLIC SAFETY

Students opt-in to automated tracking when walking home at night

NEW COMPRESSION TECHNIQUES

“Smart camera” that learns a viewpoint-specific compression scheme (reduce network requirements)

Compression for machines, not humans: preserve information needed for analysis tasks (rather than preserve image details that are salient to human eye)

PRIVACY

Video anonymization (cameras never output original images, but anonymized images)

Which analysis applications can remain effective while being performed on anonymized video sources?
Example: air-quality analysis

- Computer vision collaborators are interested if they can attribute pollution to individual vehicles
 - Large trucks, buses, trains, etc…

- Requires 24-7 recording at low frame rate

- Jump to high frame-rate resolution when potential polluter detected

- Capture setup: two time synced 12.4 Mpixel cameras emitting 12-bit RAW
 - Two cameras per NUC
“Streamer” software platform

Dataflow-based edge-to-cloud real-time video processing framework
Open source software infrastructure for CMU Visual Analytics testbed

Work by:
- Andersen
- Canel
- Kaminsky
- Jiang
- Xian
Streamer pipeline

- Specifies both image processing logic and perform dynamic control of camera capture setting control

- Streamer architecture questions:
 - What can be learned from design of GCam computational photography pipelines?

- Streaming implementation questions:
 - Many of the same algorithmic opportunities as Scanner apps (what frames to pay attention to? How to exploit temporal context?)
 - New forms of video compression: Learn camera-viewpoint specific compression?
 - Edge-to-cloud scheduling: What decisions should be made automatically by the system and which decisions must be made by the programmer?
Big visual computing systems needs

1. Techniques for efficiently mapping image analysis algorithms to accelerated computing platforms
 (Efficiently generating kernels for CPUs, GPUs, FPGAs, ASICs)

2. Distributed computing support for scalable accelerated computing
 (Connecting efficient processing pipelines to data stores, distribution across many machines)

3. Performance-centric algorithmic innovation/approximation
 (New work efficient algorithms and approximations)

4. Good abstractions for authoring scalable visual data analysis applications
 (Considering higher-level primitives for authoring future applications e.g., SQL for video DBs?)
Generating efficient pixel-processing code for CPUs/GPUs/accelerators:

Scheduling image analysis pipelines

with Ravi Mullapudi (CMU), Andrew Adams (Google), Dillon Sharlet (Google), Jonathan Ragan-Kelley (Stanford)
Code generation for deep learning

Trend: new compiler intermediate representations (IR) for optimization of deep learning data flow graphs
Real-world computational photography pipelines are complex dataflow graphs.

100 stages

Local Laplacian filter [Paris 2010, Aubry 2011]

Google Nexus HDR+ mode: over 2000 stages!
Halide DSL

Raised level of abstraction for developing high-performance image processing algorithms

\[
\text{blurx}(x,y) = \frac{(\text{in}(x-1,y) + \text{in}(x,y) + \text{in}(x+1,y))}{3};
\]
\[
\text{out}(x,y) = \frac{(\text{blurx}(x,y-1) + \text{blurx}(x,y) + \text{blurx}(x,y+1))}{3};
\]

[Ragan-Kelley, Adams et al. 2012]
Halide DSL

Raised level of abstraction for developing high-performance image processing algorithms

Functional pipeline description:

\[
\text{blurx}(x, y) = (\text{in}(x-1, y) + \text{in}(x, y) + \text{in}(x+1, y)) / 3; \\
\text{out}(x, y) = (\text{blurx}(x, y-1) + \text{blurx}(x, y) + \text{blurx}(x, y+1)) / 3;
\]

Schedule: DSL for mapping pipeline stages to a parallel machine

output.tile(x, y, xi, yi, 256, 32); # compute output in tiled order
output.vectorize(xi, 8); # vectorize innermost loop
output.parallelize(y); # parallelize loop across cores
blurx.compute_at(xi); # loop fusion
blurx.vectorize(x, 8); # vectorize innermost loop
Automatically scheduling Halide

Input: Halide program DAG

Halide Autoscheduler

Output: optimized schedule

for each 8x128 tile in parallel
 vectorize compute required pixels of A
 unroll x by 4
 vectorize compute required pixels of B
 vectorize compute pixels in tile of D

for each 8x8 tile in parallel
 vectorize compute required pixels of C
 unroll y by 2
 vectorize compute pixels in tile of E

Tile size: 8 x 128
Tile size: 8 x 8
Autoscheduled Halide performs now comparably to experts

Performance relative to expert schedules
(6-core Xeon CPU)

On 8 of the 14 benchmarks, performance within 10% of experts or better

- Bilateral grid
- Blur
- Camera pipe
- Convolution layer
- Harris corner
- Histogram equal
- Mscale interpolate
- Lens blur
- Local laplacian
- Matrix multiply
- Max filter
- Non-local means
- Unsharp mask
- VGG-16 evaluation

[Auto scheduler]

[Reference: Mullapudi 2016]
Autoscheduler saves time for experts

Non-local means denoising

Throughput vs. Time (min)

Lens blur

Throughput vs. Time (min)

Max filter

Throughput vs. Time (min)

- **Auto scheduler**
- **Dillon**
- **Andrew**

[Mullapudi 2016]
What can we contribute to scheduling DNN frameworks?

- **New challenges that do not exist in Halide:**
 - Stateful computation (recurrent networks)
 - Data-dependent execution
 - Auto-differentiation service
 - Expect diversity in DNN hardware accelerators
How do we create flexible, high-efficiency systems for analyzing the world’s visual signal?
Rich space of high-impact applications
(space is being defined as we go!)

Applications convert new performance into new value
Use every flop systems can provide!
CPUs, GPUs, ASICs . . .

Large opportunities for performance-minded algorithm design
(orders of magnitude available)
In addition to huge body of fundamental computer vision/AI/ML algorithms work
to solve problems previously not solvable

Familiar need for domain-specific programming abstractions to
impose useful structure (for productivity and performance)
Thank you

Collaborators:

Alex Poms
Ravi Mullapudi
Krishna Kumar Singh
Karima Ma
Ran Xian
Satya Tangirala
Christopher Canel
Angela Jiang
Tomas Kim
Hanbyul Joo
Dave Andersen
Srinivas Narasimhan
Yaser Sheikh
(CMU)

Will Crichton, Jonathan Ragan-Kelley,
Maneesh Agrawala, Pat Hanrahan (Stanford)
Alyosha Efros (Berkeley)
Andrew Adams, Dillon Sharlet, Bill Mark (Google)
Matt Perron, Dulloor Subramanya, Michael Kaminsky (Intel)

Support:
Intel Science and Technology Center for Visual Cloud Systems (ISTC-VCS)
Intel VEC, ML ISRAs
National Science Foundation
Google Faculty Fellowship
Heinz Foundation