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1These slides include presenter’s notes for your convenience.

In this presentation we discuss non-linearly quantized moment shadow maps. The 
notes you are reading are a best effort to make the slides stand for themselves. 
Please note that some of the slides use animations that will only be visible when the 
presentation is viewed as slide show in PowerPoint.
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In a nutshell

•Fast antialiased hard shadows,

•Minimal light leaking,

•32 or 64 bits per shadow map texel,

•Cost matches variance shadow mapping.
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Our novel technique offers antialiased hard shadows. That is valuable because 
shadow map aliasing is a widely seen artifact in modern games. Of course the 
technique also has to be fast to find use. CLICK And it has to be robust which means 
having little light leaking artifacts in this case. CLICK There are variants using either 32 
or 64 bits per shadow map texel. In both cases, the run time cost is comparable to 
that of variance shadow mapping.
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Moment shadow mapping
A recap
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The technique extends moment shadow mapping so I will start with a recap of that.
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Shadow mapping [Williams78]
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Shadow map SceneDepth distribution
𝑍 = 𝛿𝑧0

𝑧0

In real-time rendering our shadows are usually based on shadow maps. We render a 
view of the scene from the point of view of the light source and store depth values. 
Looking at a single texel in the shadow map tells us that for the corresponding light 
ray we have no shadow up to some depth z_0 and full shadow beyond this point. This 
is a simple technique but it takes samples in light and screen space without any 
filtering so it suffers from unacceptable aliasing.
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Percentage-closer filtering [Reeves87]
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Shadow map SceneDepth distribution

𝑍 = ∑𝑙=0
𝑛−1𝑤𝑙 ⋅ 𝛿𝑧𝑙

𝑧𝑙 𝑤𝑙

The most widely used technique to diminish shadow map aliasing is percentage-
closer filtering. Here we do not only consider a single shadow map sample but a 
larger filter region. The results for every single sample are combined using weights 
from a filter kernel such as a Gaussian. This leads to a filtered shadow that looks 
more plausible.
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Percentage-closer filtering is a useful technique but it is either too costly or does not 
diminish aliasing sufficiently. In this video example, we use 100 samples per pixel and 
still observe strong aliasing.
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Moment shadow maps [Peters15]

•Store 𝑧, 𝑧2, 𝑧3, 𝑧4 in RGBA,

•Filtering generates 4 moments:

𝑏 =

𝑏1
𝑏2
𝑏3
𝑏4
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∈ ℝ4
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To overcome these problems, a moment shadow map stores some additional 
information. It has four channels storing four powers of the light space depth value. 
Unlike a common shadow map, it is useful to apply a filter such as a separable blur 
directly to the moment shadow map. Doing so leads to linear combinations of the 
vectors stored in the texels. The resulting vectors are called moment vectors. Their 
entries are four moments of the depth distribution.
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Optimal lower bound
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Avoids 
wrong self 
shadowing

𝑏1 = 0, 𝑏2 = 0.093, 𝑏3 = −0.013 , 𝑏4 = 0.013

This additional information enables a heuristic reconstruction. Here is an example 
how that works. We have a ground truth depth distribution but we do not actually 
know it. The moment shadow map only provides the four moments at the top. Of 
course the ground truth is not uniquely characterized by these moments. CLICK Here 
is an example of a different depth distribution that yields the same moments. CLICK 
And here is another one. CLICK This one also has the same moments. CLICK And here 
are a few more examples. It is apparent that there is an infinite-dimensional space of 
possible reconstructions. CLICK What is important is that all of them lie between 
specific lower and upper bounds. Moment shadow mapping offers highly optimized 
algorithms to compute these bounds. CLICK For shadows we want to use the lower 
bound because this way we avoid that surface patches shadow themselves. 
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Bounds are often very narrow
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Looking at the previous example, you may think that this reconstruction is not very 
accurate because the bounds are quite far apart. However, the results are much 
better in a far more relevant case. In this example, the ground truth essentially only 
uses two different depth values. CLICK For such a ground truth the bounds are 
extremely tight. 
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Bounds are often very narrow
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Shadow map Depth distribution

This case is very important because it corresponds to a situation that occurs 
commonly in shadow map filtering. The filter region only contains the silhouette of an 
object. Thus, there are only two surfaces above and below this silhouette and the 
depth varies only minimally within these surfaces. For such a case, moment shadow 
mapping offers a nearly perfect reconstruction. 
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Moment shadow mapping with 8x MSAA
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Moment shadow map Scene

Now here you can see moment shadow mapping in action. To the left there is the 
filtered moment shadow map with its four channels. The checkerboard serves to 
visualize the alpha channel. To the right you can see the shaded scene. As you can 
see, there is much less aliasing than with percentage-closer filtering. This is owed to 
the fact that we use 8x multisample antialiasing to generate the moment shadow 
map. This works naturally with moment shadow maps but would be very expensive 
with percentage-closer filtering. We also use a 9x9 separable Gaussian blur here.
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Here is another result of moment shadow mapping. The quality is very high. Even 
short range shadows in places where shadow casters meet are reproduced 
accurately. However, we have used 128 bits per texel of the moment shadow map 
storing each moment in a single-precision float. This is quite expensive.
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There is another alternative. When an appropriate linear transform is applied before 
storage, it is viable to use only 64 bits per texel of the moment shadow map. 
However, the quantization introduces rounding errors. To avoid that these errors 
break the reconstruction, a bias has to be applied. Unfortunately, this bias introduces 
some light leaking in short-range shadows. The technique is still useful and has been 
used in production as is but there is room for improvement.
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With our non-linear quantization, we get no increase in light leaking even at 32 bits 
per texel.
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Outline

•Non-linear quantization,

•Fast filtering,

•Bilinear interpolation.
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To get there, we will first discuss the quantization scheme itself. Then we find that it is 
not a good match for the way a moment shadow map is commonly filtered. Thus, we 
provide a more sophisticated scheme that offers a considerable speedup. Finally, we 
figure out how to do without hardware-accelerated bilinear interpolation.

15



Non-linearly quantized 
moment shadow maps
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So lets start with the quantization scheme.
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A non-linear representation of moments

𝑏1
𝑏2
𝑏3
𝑏4

𝑦1
𝑦2
𝑣2
𝜉4
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Vulnerable to 
rounding errors

Robust to 
rounding errors

Non-linear map

We start from a vector of filtered moments. This vector is vulnerable to rounding 
errors such that we cannot store it as compactly as we would like. We seek a different 
representation through four scalars that is more robust to rounding errors and can be 
quantized more aggressively. Since the original moment shadow mapping already 
uses an optimized linear transform, we can only hope for an improvement with a 
non-linear map. On the next slides I will explain the four quantities to the right.
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3 moments as 2 depths and 1 weight
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𝑏1
𝑏2
𝑏3

= (1 − 𝑣2) ⋅

𝑦1
𝑦1
2

𝑦1
3

+ 𝑣2 ⋅

𝑦2
𝑦2
2

𝑦2
3

Lets reconsider the case where moment shadow mapping yields a perfect 
reconstruction. The entire depth distribution is characterized by the two depth values 
y_1 and y_2 and two weights v_1 and v_2 which add up to one. CLICK It is easy to 
compute the first three moments of this depth distribution. Prior work also provides 
us with an efficient algorithm to go the other way. Thus, we can represent the first 
three moments through two depths and one weight. We know how to store depth 
values and normalized weights and we understand how errors change the depth 
distribution. Therefore, these three quantities provide a useful non-linear 
representation.
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The offset of the 4th moment
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0
𝜉4 ≔ 𝑏4 − 𝑣1 ⋅ 𝑦1

4 − 𝑣2 ⋅ 𝑦2
4

=

Of course we must not drop the fourth moment entirely. Instead of storing it directly, 
we store its difference to the fourth moment that we would have if the perfect 
reconstruction case were present. If this is indeed the case, this offset of the fourth 
moment is zero. Now lets see what happens for greater values. CLICK We increase the 
value slowly. As we do so, the lower bound that serves as reconstruction is smoothed 
out a little bit. At a value of 6*10^-5 it already differs from the perfect reconstruction 
considerably. When we use linear 64-bit quantization, errors introduced into the 
offset of the fourth moment are in this magnitude. This slightly smoothed out 
reconstruction is the reason for the light leaking in short-range shadows. To avoid 
that, it is important to preserve small values accurately. CLICK This is not trivial 
because the offset of the fourth moment can also take much larger values when 
there are more surfaces in the filter region.
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The offset of the 4th moment is small
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99.9% of texels: 𝜉4 ≤ 10−4

0.00001% of texels: 𝜉4 ≥ 10−2

Moment shadow map

To understand what we are dealing with, we should take a look at the distribution of 
this offset. To the left you can see a filtered moment shadow map. To the right, there 
is a histogram showing values of the offset of the fourth moment on the x-axis and 
the corresponding number of texels on the y-axis. Obviously, this histogram is very 
non-uniform. 99.9% of all texels have a tiny value below 10^-4. Only very few texels
have moderately large values. Essentially, this is good news because it means that the 
case with perfect reconstruction is extremely common. On the other hand, it poses a 
problem for storing the offset because even tiny rounding errors may be intolerable.
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Warping the offset of the 4th moment

•Warp offset 𝜉4 before storing it,

•Make the histogram more uniform,

•Solution independent of shadow map,

•Should map well to GPU instruction set,

•Experimentation leads to a scaled and shifted
log log 𝜉4 .
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We should warp the offset before storing it to make this histogram more uniform. 
CLICK It is desirable to have a solution that works reasonably well independent of the 
present shadow map. It should also map well to the instruction set available in 
shaders. CLICK After some experimentation, we settled for the logarithm of the 
logarithm of the offset of the fourth moment. The growth properties of this 
transform provide a good idea of just how small the offset of the fourth moment 
tends to be.
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Warped values are more uniform
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Moment shadow map

Indeed, this warp makes our histogram much more uniform. Now it can also be seen 
very clearly that nearly all texels have a value smaller than the rounding errors 
introduced by linear 64-bit quantization.
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Quantization in 64 or 32 bits
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𝑦1 (16 bits) 𝑦2 (16 bits)

𝑣2 (16 bits) Warped 𝜉4 (16 bits)

𝑦1 (10 bits) 𝑦2 (10 bits) 𝑣2 (7 bits)
Warped 𝜉4

(6 bits)

Quantization in 64 bits (R16G16B16A16 normalized uint):

Quantization in 32 bits (R32 uint):

With this warp at hand, we are ready to define our quantized representations. We 
start with 64 bits where everything is quite straight-forward. We use a 16-bit 
normalized integer for each of the quantities. The only thing to remember is that the 
warp must be used for the offset of the fourth moment. CLICK At 32 bits, the scheme 
is a bit more intricate. We use 6 bits for the warped offset of the fourth moment. 
Seven bits are used for the weight but since this weight is often proportional to 
brightness, it is better to store the square root in the spirit of sRGB. Finally, we exploit 
that y_1 is always less than y_2 to gain one extra bit. Then each depth value can be 
stored with 10 bits of precision.
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Optimized shading

•No need to convert back to 4 moments,

•Optimized algorithm computes shadow 
directly from 𝑦1, 𝑦2, 𝑣2, 𝜉4,

•See the paper.
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So now we know how to get a non-linearly quantized moment shadow map but what 
do we do with it? When we take a sample and want to shade a fragment, there is no 
need to convert the non-linear representation back to four moments. CLICK Instead, 
we can directly benefit from the non-linear representation to arrive at an optimized 
algorithm. CLICK For the rather mathematical details, you will have to read the paper.
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Results
Of the non-linear quantization
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No lets take a look at the results of this quantization scheme.
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Here is a result of moment shadow mapping using one single-precision float per 
moment. As expected, this result looks good.
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Error above 3% 
for 69 pixels

Now here is what we get with our non-linear quantization at 64 bits. The important 
thing to notice is that there is hardly anything to notice. CLICK Only 69 pixels have an 
absolute error in the shadow intensity above 3% and there is no case where this 
could be considered objectionable light leaking. For all practical purposes, linear 
quantization at 128 bits and non-linear quantization at 64 bits provide identical 
reconstruction quality.
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Things are a little different if we look at our non-linear quantization at 32 bits. We get 
no significant light leaking but there are some artifacts along protrusions casting 
shadow over an extremely short range.

28



29

Lets take a closer look at that. Here is a close up showing non-linear moment shadow 
mapping at 64 bits per texel. The results are smooth and plausible.
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Here is what we get at 32 bits per texel. There are some rather obvious banding 
artifacts. These arise because 10 bits provide insufficient precision for the depth 
values when the shadows are cast over such short range. Dependent on the 
geometry of shadow casters and the depth range, this may or may not be a problem.

30



Filtering in shared memory
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Next we will figure out how we can do the filtering for a non-linearly quantized 
moment shadow map efficiently.
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Three-pass filtering
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Compute shader:
Resolve

Main
memory

Compute shader: 
Horizontal blur

Compute shader:
Vertical blur

Multisampled shadow map

Moment shadow map

Moment shadow map

Moment shadow map

Moment shadow map

Moment shadow map

Lets start by reviewing what was originally proposed for moment shadow maps. 
CLICK We start by reading samples from a multisampled shadow map in a compute 
shader. A vector of moments is generated for each sample and the results are 
combined in a resolve to obtain a moment shadow map which is then written back to 
main memory. CLICK Usually, we require additional filtering so we apply a separable 
blur. The horizontal pass reads the moment shadow map from main memory and 
writes it back. CLICK Finally, the same thing happens for the vertical pass. Presented 
like this, it is clear that there is a lot of redundant bandwidth usage. Since main 
memory bandwidth is the bottleneck, this is a major problem. Even at 64 bits per 
texel, the overhead is considerable but to avoid additional light leaking, we would 
need 128 bits per texel.
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Three-pass filtering in shared memory
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Compute shader:
Resolve

9x1 horizontal 
blur

1x9 vertical blur

Readout / 
quantization

Main
memory

Multisampled shadow map

Moments

Non-linear moment shadow map

Shared 
memory

Moments

Moments

Moments

Moments

Moments

To really benefit from the non-linear quantization, we need something different. 
CLICK We start out doing the resolve in a compute shader, CLICK but this time we do 
not write the resulting moments back to main memory. Instead we store the results 
for a small block in shared memory. CLICK The horizontal blur reads the moments 
from there and writes them back there CLICK and so does the vertical blur. CLICK 
Finally, there is a readout step that grabs all the filtered moments and applies the 
non-linear quantization. CLICK Only then the results are written back to main 
memory. This way, we have reduced use of main memory to the bare minimum and 
since shared memory is much faster, it is no problem to use single-precision floats for 
the intermediate moments.
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Accomplished design goals

✓ High occupancy,

✓ All 256 threads busy in all steps,

✓ Few redundant reads,

✓ No bank conflicts,

✓ Only two barriers.
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Designing such a compute shader is tricky because a lot of constraints have to be met 
simultaneously. The solution that we provide with the paper accomplishes a high 
occupancy and all 256 threads of a thread group are busy in each step. At the same 
time, there are few redundant reads and no bank conflicts. Synchronization 
throughout the entire algorithm only requires two barriers.
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Interpolation and dithering
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Another problem that we encounter with the non-linear quantization is that 
hardware-accelerated bilinear interpolation becomes unavailable. We need to find an 
alternative.
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Dithering replaces bilinear

•Bilinear requires 4 samples → slow,

•Add random sub-texel offset to texture 
coordinate,

•Compute shadow for a single sample,

•Use precomputed blue noise.
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We could do the bilinear interpolation manually in the shader but processing four 
samples like this is quite expensive. CLICK Instead we choose to use dithering. We 
add a random offset to each texture coordinate before the lookup. Then we only 
compute the shadow using this one sample. CLICK To make the resulting noise as 
subtle as possible, we wish to have weak low frequencies. This is accomplished by 
using blue noise for the random offsets.
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Blue noise dithering

•64 tileable textures at 64x64,

•Random texture and shift in each frame,
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Nearest neighbor Static dither Animated dither

For this blue noise, we precompute 64 tileable textures at 64x64. In each frame, we 
tile the screen with a random texture using a random shift. One such texture is small 
enough to reside in L1 cache most of the time. This leads to an animated dither 
pattern such as the one shown here. It is far more pleasing than a static pattern or 
nearest neighbor interpolation.
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Results
Of blue noise dithering
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Again, we would like to take a look at the results.
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Here is true bilinear interpolation. As expected, everything is looking good.
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Nearest neighbor interpolation uses only a single sample so it is fast but the artifacts 
are too obvious to consider it as serious option.

40



Blue noise dithering

Play external video at 60 Hz.
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With blue noise dithering, we get a result that is perceptionally close to bilinear 
interpolation but using only a single sample. You can clearly see the dither patterns in 
the magnified insets but they are almost imperceptible without magnification. I do 
not claim that this solution will fit all cases but in a time where temporal antialiasing 
is widely used, it seems like a useful approach. Note that we do not use temporal 
antialiasing here.
Note: The supplementary video includes the video material used here.
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Run time
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Finally, I would like to discuss the run time of our approach.
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Output resolution 1920x1080, no MSAA

GTX 970
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Here we fix the output resolution at full HD and do not use multisample antialiasing 
for the moment shadow maps. We consider the change of the frame time as the 
shadow map resolution increases. For percentage closer filtering, the cost grows 
slowly because a texel in the shadow map takes only 16 bits and does not require any 
post processing. For a variance shadow map the cost per texel is higher and for a 
moment shadow map at 64 bits it is still higher. CLICK As we add the graph for our 
non-linear quantization at 64 bits per texel, we note that the cost is almost identical 
to that of variance shadow mapping. CLICK However, going down to 32 bits does not 
yield a further improvement because we are now limited by shared memory 
bandwidth. Note that this speedup is due to the optimized filtering, not due to the 
quantization scheme. The quantization scheme serves to give us a quality 
improvement over linear quantization at 64 bits.
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Output resolution 1920x1080, 4x MSAA
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GTX 970

If we enable 4x multisample antialiasing for the moment shadow maps, the cost per 
texel increases and percentage-closer filtering without multisample antialiasing is 
faster for a 2048² shadow map. This extra cost is entirely due to the rendering of the 
shadow map itself, the cost for filtering does not grow with our optimized 
implementation. The reduction in shadow map aliasing is immense so the extra cost 
is well-justified.
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Shadow map resolution 2048², 4x MSAA
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GTX 970

Things get still more compelling if we keep the shadow map resolution fixed at 2048² 
with 4x MSAA and vary the output resolution. This time we see that the cost per pixel 
for 9x9 percentage-closer filtering is much higher than for moment shadow maps. 
Even at a 4k resolution, the overhead for shading is only 0.3 ms with all kinds of 
moment shadow maps. CLICK This is becoming more and more important as 4k 
displays are being pushed into the market. CLICK Also, head-mounted displays require 
high shading rates. CLICK As the hardware improves, these resolutions will only grow 
such that moment shadow mapping can lead to major savings especially with our 
novel non-linear quantization.
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Conclusions
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Lets wrap it up with some conclusions.
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Conclusions

•Affordable antialiased shadows,

•Non-linear 64-bit quantization on par with 
128 bits,

•32-bit quantization only adds slight banding,

•Cost matches that of variance shadow 
mapping.
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Non-linearly quantized moment shadow maps offer very affordable antialiased
shadows. CLICK If we use 64 bits per texel, the quality is the same as with 128 bits. 
Thus, light leaking is minimal. CLICK At 32 bits per texel the only additional artifact is 
some banding in short-range shadows. Overall the quality of this approach is better 
than one might expect. CLICK In both cases, the run time cost matches that of 
variance shadow mapping.
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Thanks!
Questions?
Contact me at Christoph@MomentsInGraphics.de.
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That’s all. If you have any questions about my work, please do not hesitate to contact 
me at Christoph@MomentsInGraphics.de. I am always curious to hear about uses of 
moment shadow mapping and if you run into any problems, there is a good chance 
that I will be able to help.
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Appendix
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Construction of the bounds
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Taking 𝑧𝑓 to the limit
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𝑧𝑓 → ∞

𝑤0 → 0
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Optimized shading

• Non-linear quantization gives us a matrix factorization ☺ ,
1 𝑏1 𝑏2
𝑏1 𝑏2 𝑏3
𝑏2 𝑏3 𝑏4

= 𝑣1 ⋅

1
𝑦1
𝑦1
2

⋅

1
𝑦1
𝑦1
2

𝑇

+ 𝑣2 ⋅

1
𝑦2
𝑦2
2

⋅

1
𝑦2
𝑦2
2

𝑇

+ 𝜉4 ⋅
0
0
1

⋅
0
0
1

𝑇

=

1 1 0
𝑦1 𝑦2 0

𝑦1
2 𝑦2

2 1
⋅

𝑣1 0 0
0 𝑣2 0
0 0 𝜉4

⋅

1 1 0
𝑦1 𝑦2 0

𝑦1
2 𝑦2

2 1

𝑇

• We scale and shift to ensure 𝑦1 = 0 and  𝑦2 = 1,

• Solving a system of linear equations becomes effortless.
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