Accelerating GPU inferencing with DirectML and DirectX 12

Shrinath Shanbhag
Senior Software Engineer
Microsoft Corporation
Machine Learning

• Machine learning has become immensely popular over the last decade
 • Traditionally used for linear regression and logistic regression (classification)
 • Example – Prediction of housing value, classification of samples into different classes
 • Is useful today in many novel applications scenarios such as - Super resolution, antialiasing, character motion synthesis, texture synthesis, human-like player AI and more
Machine Learning at Microsoft

• Microsoft has made huge investments in AI and Machine Learning across the company.

• AI capabilities are embedded in products such as
 • Office 365 uses ML for productivity enhancement features like flood fill.
 • Windows 10 uses ML for Windows Hello, intelligent video creation in the Photos App.
 • Bing and Cortana use AI to search and answer questions etc.

• Microsoft Cognitive Toolkit, Azure Machine Learning Services, Windows Machine Learning, are part of Microsoft's Machine Learning API's and Services
 • Microsoft Cognitive Toolkit is a free, easy to use, open-source, commercial-grade toolkit that trains deep learning algorithms.
 • Azure ML services provide machine learning at big data scale and supports a number of frameworks such as Caffe, Cognitive Toolkit, TensorFlow and others.
 • Windows Machine Learning allows you to use trained ML models in your applications, to evaluate locally on Windows 10 devices leveraging the device's CPU and GPU.
Windows Machine Learning

- Previewed with Windows Spring Creators Update
 - Applications use the WinML API for inferencing
 - Enables a variety of machine learning scenarios in your PC apps and games
 - Consumes the Open Neural Network Exchange (ONNX) model format

- Simple to use
 - Train your model in framework of choice and/or with cloud services
 - Convert model to Open Neural Network Exchange (ONNX)
 - Use WinML to load, bind, and evaluate in your application
WinML today

• Graduated out of preview namespace
 • Windows.AI.MachineLearning available today in Windows Insider Program (WIP) builds

• First release targets ONNX 1.2.2

• Additional feature support
 • Models trained with FP16 weights reduce memory footprint and increase performance
 • Custom operators give flexibility to expand functionality beyond ONNX
 • Metacommands enable better performance and hardware utilization
Windows Machine Learning Architecture

- Windows Machine Learning is
 - Hardware accelerated
 - Supported on all DX12-capable hardware
 - Delivered to all Windows customers in the OS

- Uses DirectML for GPU hardware acceleration
Hello DirectML

- Part of the Microsoft DirectX® family of APIs
- Low-level API for performing ML inferencing

- DirectX 12 style interface
 - Very low overhead, thin abstractions over silicon
 - Broad hardware support
 - Conformant, compatible, consistent

- Puts control into developer’s hands
Why DirectML?

• Winml API is primarily model focused: Load, Bind, Eval

• Domains like games need a different level of abstraction
 • Developer control
 • High performance
 • Low latency
 • Fine-grained resource management
 • Suitable for integration into existing engines or rendering pipelines

• ML frameworks and libraries out there with similar requirements
 • Cognitive Toolkit, PyTorch, MXNet, TensorFlow etc.
What does DirectML do?

• Provides hardware-accelerated ML operators for inferencing.
 • Support from hardware partners enables architecture-specific optimizations

• Provides developer flexibility and control
 • Resource management
 • Schedule ML work as they see fit
 • Interleave work with other DX12 workloads

• Supported on all DX12-compatible hardware
 • Examples:
 • NVIDIA Kepler and above
 • AMD Radeon 7000-series and above
 • Intel Haswell (4th-gen core) and above
 • If no GPU is available, fall back to CPU
Which operators does DirectML provide?

- Elementwise
- MatMul
- Activation
- FC
- Convolution
- Pooling
- Normalization
- Random
- RNN
- GRU
- LSTM
- And more...
DirectML Programming Model

• DirectML is a low level programming API and so the workflow is more involved.
 • You manage most things yourself
 • Parse the graph or create it programmatically on the fly
 • Create and manage buffers
 • Upload and download data to and from GPU
 • Create and dispatch each operator
What is the DirectML workflow?

- Similar workflow to D3D12
 - Create DirectML device
 - Create resources, operators
 - Bind resources and PSO
 - Execute command list on your D3D12 command queue

- Resource lifetime and synchronization are caller’s responsibility

- CreateDmlDevice(ID3D12Device)
- IDmlDevice::CreateDMLDeviceContext
- IDmlDevice::CreateDMLResource
- IDmlDevice::Create*Operation
- IDmlDeviceContext::AddOperation
- ID3D12CommandQueue::ExecuteCommandLists
Demo

Can I see some DML code?
What do DirectML operations look like?

D3D12 command queue:
- Draw
- Dispatch
- Set PSO
- Set Root Signature
- Bind Resources
- Dispatch
- Barrier
- Draw

Other DirectX workload:
- Other DirectX workload
How does DirectML perform?

• DirectML aims to achieve HW native performance

• DirectML uses new DirectX 12 feature called Metacommands

• Metacommands allow vendors to expose hardware-specific optimizations
What are Metacommands?

• DirectML defines a set of machine learning metacommands
 • Enables hardware-specific optimizations even though DirectML is a hardware-agnostic API
 • Efficient compute shader fallbacks for hardware/drivers without support

• Allows DirectML to perform better than generic hand-written compute shaders
Metacommands

Convolution + Activation metacommand

NVIDIA driver
- Optimized kernel

Intel driver
- Optimized kernel

AMD driver
- Optimized kernel

...
Metacommmand operations

• Execution of metacommands performed on D3D12 command lists
 • Just like Draws, Dispatches, etc.
When should I use DirectML?

• You have a trained ML Model which is ready to go.

• You have an app that needs to deal with demanding real-time, high-performance, or resource-constrained scenarios
 • Examples: Games can use ML models for upscaling, denoising, anti-aliasing, style transfer etc.

• You are writing custom ML frameworks and need a high performance backend on Windows
What is the DirectML Roadmap?

• DirectML still under active development
• First preview version in Spring 2019
• Private preview available for early adopters - contact us at: askwindowsml@microsoft.com

• Stay tuned to the DirectX blog – slides will be posted along with links and information on how to get started with Windows ML.
 https://blogs.msdn.microsoft.com/directx/
Questions?