Accelerating GPU inferencing with DirectML and DirectX 12

Shrinath Shanbhag
Senior Software Engineer
Microsoft Corporation

Machine Learning

- Machine learning has become immensely popular over the last decade
 - Traditionally used for linear regression and logistic regression (classification)
 - Example Prediction of housing value, classification of samples into different classes
 - Is useful today in many novel applications scenarios such as Super resolution, antialiasing, character motion synthesis, texture synthesis, human-like player Al and more

Machine Learning at Microsoft

- Microsoft has made huge investments in AI and Machine Learning across the company.
- Al capabilities are embedded in products such as
 - Office 365 uses ML for productivity enhancement features like flood fill.
 - Windows 10 uses ML for Windows Hello, intelligent video creation in the Photos App.
 - Bing and Cortana use AI to search and answer questions etc.
- Microsoft Cognitive Toolkit, Azure Machine Learning Services, Windows Machine Learning, are part of Microsoft's Machine Learning API's and Services
 - Microsoft Cognitive Toolkit is a free, easy to use, open-source, commercial-grade toolkit that trains deep learning algorithms.
 - Azure ML services provide machine learning at big data scale and supports a number of frameworks such as Caffe, Cognitive Toolkit, TensorFlow and others.
 - Windows Machine Learning allows you to use trained ML models in you applications, to evaluate locally on Windows 10 devices leveraging the device's CPU and GPU.

Windows Machine Learning

- Previewed with Windows Spring Creators Update
 - Applications use the WinML API for inferencing
 - Enables a variety of machine learning scenarios in your PC apps and games
 - Consumes the Open Neural Network Exchange (ONNX) model format
- Simple to use
 - Train your model in framework of choice and/or with cloud services
 - Convert model to Open Neural Network Exchange (ONNX)
 - Use WinML to load, bind, and evaluate in your application

WinML today

- Graduated out of preview namespace
 - Windows.AI.MachineLearning available today in Windows Insider Program (WIP) builds
- First release targets ONNX 1.2.2
- Additional feature support
 - Models trained with FP16 weights reduce memory footprint and increase performance
 - Custom operators give flexibility to expand functionality beyond ONNX
 - Metacommands enable better performance and hardware utilization

Windows Machine Learning Architecture

- Windows Machine Learning is
 - Hardware accelerated
 - Supported on all DX12-capable hardware
 - Delivered to all Windows customers in the OS
- Uses DirectML for GPU hardware acceleration

Hello DirectML

- Part of the Microsoft DirectX® family of APIs
- Low-level API for performing ML inferencing
- DirectX 12 style interface
 - Very low overhead, thin abstractions over silicon
 - Broad hardware support
 - Conformant, compatible, consistent
- Puts control into developer's hands

Why DirectML?

- Winml API is primarily model focused: Load, Bind, Eval
- Domains like games need a different level of abstraction
 - Developer control
 - High performance
 - Low latency
 - Fine-grained resource management
 - Suitable for integration into existing engines or rendering pipelines
- ML frameworks and libraries out there with similar requirements
 - Cognitive Toolkit, PyTorch, MXNet, TensorFlow etc.

What does DirectML do?

- Provides hardware-accelerated ML operators for inferencing.
 - Support from hardware partners enables architecture-specific optimizations
- Provides developer flexibility and control
 - Resource management
 - Schedule ML work as they see fit
 - Interleave work with other DX12 workloads
- Supported on all DX12-compatible hardware
 - Examples:
 - NVIDIA Kepler and above
 - AMD Radeon 7000-series and above
 - Intel Haswell (4th-gen core) and above
 - If no GPU is available, fall back to CPU

Which operators does DirectML provide?

DirectML Programming Model

- DirectML is a low level programming API and so the workflow is more involved.
 - You manage most things yourself
 - Parse the graph or create it programmatically on the fly
 - Create and manage buffers
 - Upload and download data to and from GPU
 - Create and dispatch each operator

What is the DirectML workflow?

- Similar workflow to D3D12
 - Create DirectML device
 - Create resources, operators
 - Bind resources and PSO
 - Execute command list on your D3D12 command queue

- CreateDmlDevice(ID3D12Device)
- IDmlDevice::CreateDMLDeviceContext
- IDmlDevice::CreateDMLResource
- IDmlDevice::Create*Operation
- IDmlDeviceContext::AddOperation
- ID3D12CommandQueue:: ExecuteCommandLists

Resource lifetime and synchronization are caller's responsibility

Demo

Can I see some DML code?

What do DirectML operations look like?

How does DirectML perform?

DirectML aims to achieve HW native performance

 DirectML uses new DirectX 12 feature called Metacommands

 Metacommands allow vendors to expose hardware-specific optimizations

What are Metacommands?

- DirectML defines a set of machine learning metacommands
 - Enables hardware-specific optimizations even though DirectML is a hardware-agnostic API
 - Efficient compute shader fallbacks for hardware/drivers without support
- Allows DirectML to perform better than generic hand-written compute shaders

Metacommands

NVIDIA driver

Optimized kernel

Intel driver

Optimized kernel

AMD driver

Optimized kernel

Metacommand operations

- Execution of metacommands performed on D3D12 command lists
 - Just like Draws, Dispatches, etc.

D3D12 command queue Draw	Dispatch	ExecuteMetaCommand	Barrier	Draw
-----------------------------	----------	--------------------	---------	------

When should I use DirectML?

- You have a trained ML Model which is ready to go.
- You have an app that needs to deal with demanding real-time, high-performance, or resource-constrained scenarios
 - Examples: Games can use ML models for upscaling, denoising, anti-aliasing, style transfer etc.
- You are writing custom ML frameworks and need a high performance backend on Windows

What is the DirectML Roadmap?

- DirectML still under active development
- First preview version in Spring 2019
- Private preview available for early adopters contact us at:

askwindowsml@microsoft.com

• Stay tuned to the DirectX blog – slides will be posted along with links and information on how to get started with Windows ML.

https://blogs.msdn.microsoft.com/directx/

Questions?