Posters Fast Forward

1. “Massive Networks,” Daniel Filonik @UNSW EPICentre, CSIRO Data61
2. “Hybrid Ray-Traced Ambient Occlusion,” Morgan McGuire @NVIDIA
3. “A 2D to 3D Video Converter using Optical Flow Information and Least Squares Regression,” Hui-Yun Lee @Chang Gung University
4. “Blender based Rendering-as-a-Service Platform for High Performance Computing Clusters,” Milan Jaros @Technical University of Ostrava
5. “Energy Consumption Optimization of Rendering in Blender Cycles on x86 Architectures” Lubomir Riha @Technical University of Ostrava
Massive Networks

Daniel Filonik, Dominic Branchaud, Robert Lawther, Piotr Szul, Alex Collins, Tomasz Bednarz

UNSW EPICentre, CSIRO Data61
Massive Networks
Visualising Large-Scale Graphs in Immersive Environments

Extraction
Cloud / HDD
SQL

Preparation
Graph Summary
Cloud / CPU
Graph Layout

Visualisation
GLTF
Graph Rendering
Local / GPU
Pixels
Massive Networks
Visualising Large-Scale Graphs in Immersive Environments

```
"meshes": [{
  "name": "Graph",
  "primitives": [{
    "attributes": {
      "POSITION": 0,
      "COLOR_0": 1,
      "_DEGREE": 2,
      "_WEIGHT": 3
    },
    "indices": 4,
    "mode": 0 // GL_POINTS
  },
  "attributes": {
    "POSITION": 5,
    "COLOR_0": 6,
    "_WEIGHT": 7
  },
  "indices": 8,
  "mode": 1 // GL_LINES
}]
```
Massive Networks
Visualising Very Large-Scale Graphs in Immersive Environments
Hybrid Ray-Traced Ambient Occlusion
Louis Bavoil Edward Liu Peter Shirley Morgan McGuire
Tracing: 1.5 ms on TITAN V @ 1080p
Brute force: 2 Geometric Rays

Tracing: 6.4 ms on TITAN V @ 1080p
Tracing: **5.8 ms** on TITAN V @ 1080p

1 Screen + 1 Geometric Ray + Denoising
A 2D to 3D Video Converter using Optical Flow Information and Least Squares Regression

Hui-Yun Lee
Chang Gung University
Introduction

• 3D visual technology and media contents
 • more attractive than traditional media
 • increasing attention from people

• Current methods to model 3D scenes
 • hardware solutions: dual lens, motion capture
 • software solutions: Maya and 3Ds max.

• For existing 2D media
 • can only develop a method to transferring 2D to 3D
 • also an economic method to produce 3D contents
Our Method

• Read the video into frames.
• Calculate the optical flow values for each frame.
• Assign six grades, from 0 to 5 with uniform steps, as the depth values to the corresponding pixels.
• Use the mean-shift technique to partition a given image frame into superpixels, and assign the maximum depth grade thereof to everywhere of the same mean-shift region.
• Smooth the change of depth by building a high order polynomial surface according to the depth map.
• Render the reorganized 3D video.
Examples

(a) (b) (c)
(d) (e) (f)
Examples
Blender based Rendering-as-a-Service Platform for High Performance Computing Clusters

August 10-12, Vancouver, BC

Authors: Milan Jaros, Petr Strakos, Lubomir Riha
Our approach

- Our platform is based on Blender renderers and upgrades them with HPC technologies.
- In this way we can offer not only standard offline but also interactive rendering mode which relies on fast HPC interconnecting networks.
Rendering tests

- Scalability performance in offline rendering mode

- Rendering time comparison

Scalability performance in offline rendering mode

Rendering time comparison

Scalability performance in offline rendering mode

Rendering time comparison
Energy Consumption Optimization of Rendering in Blender Cycles on x86 Architectures

August 10-12, Vancouver, BC

Authors: Milan Jaros, Ondrej Vysocky, Petr Strakos, Lubomir Riha
Our approach

- Extend Blender's renderer to support HPC resources and allow optimization of the energy consumption.

- The energy measurement of the whole node is defined by the equation:

\[E = energy_{cpu} + baseline \times time \]
Architectures comparison

- Comparing between architectures **up to 18% of energy can be saved while increasing the rendering time just by 3%** (The Fishy Cat scene).

<table>
<thead>
<tr>
<th>Platform</th>
<th>Default settings</th>
<th>Default HW configuration</th>
<th>Optimal settings</th>
<th>Optimal HW configuration</th>
<th>Energy and time savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom scene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSW AC</td>
<td>19318 J; 65 s</td>
<td>3 GHz (U); 2.8 GHz (C)</td>
<td>18286 J; 79 s</td>
<td>1.6GHz (U); 2.4 GHz (C)</td>
<td>E+5%; T-22%</td>
</tr>
<tr>
<td>HSW DLC</td>
<td>18699 J; 65 s</td>
<td>3 GHz (U); 2.8 GHz (C)</td>
<td>17001 J; 79 s</td>
<td>1.6GHz (U); 2.4 GHz (C)</td>
<td>E+12%; T-22%</td>
</tr>
<tr>
<td>KNL AC</td>
<td>16681 J; 66 s</td>
<td>1.5 GHz (C)</td>
<td>16681 J; 66 s</td>
<td>1.4 GHz (C)</td>
<td>E+14%; T-2%</td>
</tr>
<tr>
<td>Dweebs scene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSW AC</td>
<td>19072 J; 64 s</td>
<td>3 GHz (U); 2.8 GHz</td>
<td>18249 J; 78 s</td>
<td>1.8 GHz (U); 2.4 GHz (C)</td>
<td>E+4%; T-22%</td>
</tr>
<tr>
<td>HSW DLC</td>
<td>18541 J; 64 s</td>
<td>3 GHz (U); 2.8 GHz</td>
<td>17093 J; 78 s</td>
<td>1.8 GHz (U); 2.4 GHz (C)</td>
<td>E+10%; T-22%</td>
</tr>
<tr>
<td>KNL AC</td>
<td>15978 J; 62 s</td>
<td>1.5 GHz (C)</td>
<td>15743 J; 66 s</td>
<td>1.3 GHz (C)</td>
<td>E+17%; T-3%</td>
</tr>
<tr>
<td>Fishy Cat scene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSW AC</td>
<td>18794 J; 63 s</td>
<td>3 GHz (U); 2.8 GHz (C)</td>
<td>17755 J; 73 s</td>
<td>1.8 GHz (U); 2.4 GHz (C)</td>
<td>E+6%; T-16%</td>
</tr>
<tr>
<td>HSW DLC</td>
<td>18211 J; 63 s</td>
<td>3 GHz (U); 2.8 GHz (C)</td>
<td>16672 J; 73 s</td>
<td>1.8 GHz (U); 2.4 GHz (C)</td>
<td>E+11%; T-16%</td>
</tr>
<tr>
<td>KNL AC</td>
<td>15607 J; 61 s</td>
<td>1.5 GHz (C)</td>
<td>15431 J; 65 s</td>
<td>1.3 GHz (C)</td>
<td>E+18%; T-3%</td>
</tr>
<tr>
<td>Pabellon B. scene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSW AC</td>
<td>17833 J; 60 s</td>
<td>3 GHz (U); 2.8 GHz (C)</td>
<td>17220 J; 73 s</td>
<td>1.8 GHz (U); 2.4 GHz (C)</td>
<td>E+3%; T-22%</td>
</tr>
<tr>
<td>HSW DLC</td>
<td>17068 J; 60 s</td>
<td>3 GHz (U); 2.8 GHz (C)</td>
<td>15732 J; 73 s</td>
<td>1.8 GHz (U); 2.4 GHz (C)</td>
<td>E+12%; T-22%</td>
</tr>
<tr>
<td>KNL AC</td>
<td>16096 J; 63 s</td>
<td>1.5 GHz (C)</td>
<td>15872 J; 67 s</td>
<td>1.3 GHz (C)</td>
<td>E+11%; T-12%</td>
</tr>
</tbody>
</table>