Correlation-Aware Semi-Analytic Visibility for Antialiased Rendering

Cyril Crassin, Chris Wyman, Morgan McGuire, Aaron Lefohn
Alpha-Blending

Correlation-aware
Beam rasterization pipeline

Fragment shader:
- Compute all visibility attributes
- Coverage: \(\alpha_A = \frac{\text{Area}(A)}{\text{Area}(\text{Pixel})} \)
- Shading at centroid

1 primitive at a time
Fixed compact per-pixel storage
Alpha-Composition

\[\alpha_A \text{ OVER } \alpha_B = \frac{\text{Area}(A)}{\text{Area}(\text{Pixel})} \]

\[\alpha_A = P(A) \text{ in } [0,1] \]

Fractional coverage

Probability of coverage

Assuming \(A, B \) statistically independent (uncorrelated):

\[P(A \cap B) = P(A) \times P(B) \]

Aggregate geometry

Uncorrelated coverages

Structured geometry

Correlated coverages

\[\alpha_A \text{ OVER } \alpha_B = P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A) + P(B) \times (1 - P(A)) \]

Visible contribution of \(B \)

\[\alpha_A = \alpha_A + \alpha_B \times (1 - \alpha_A) \]

```
\( \alpha_A \) OVER \( \alpha_B \)
```

```
Decorrelation
```

```
“Some”-correlation
```

```
Full-correlation:
P(A | B) = 1,
P(A \cap B) = P(B) \times P(A)
\rightarrow P(A \cup B) = P(A)
```

```
Anti-correlation:
P(A | B) = 0, P(B | A) = 0,
P(A \cap B) = 0
\rightarrow P(A \cup B) = P(A) + P(B)
```

```
\text{Visible contribution of } B
```

```
\text{Fractional coverage}
```

```
\text{Probability of coverage}
```

```
\text{Uncorrelated coverages}
```

```
\text{Correlated coverages}
```
Correlation tracking

Localization bitmasks:
Track the **spatial location** of coverage
NOT *Coverage* masks!

32-bit Mask
Jittered positions
(Hammersley sequence)

\(\alpha_0 \) ?

\(\alpha_A = 0.2 \)
\(|M_A| = 5 \)

\(\alpha_B = 0.13 \)
\(|M_B| = 3 \)
Generating *localization* masks

Lookup table fetches:
(2D Table \((\Theta, r)\), 16KB)

Tiny, zero-coverage triangles:

32-bit Mask Jittered positions
(Hammersley sequence)

[Waller et al. 2000, Sintorn et al. 2008…]
Correlation tracking

Localization bitmasks:
Track the **spatial location** of coverage

- α_O?

\[\alpha_A = 0.2 \]
\[|M_A| = 5 \]
\[\alpha_B = 0.13 \]
\[|M_B| = 3 \]

\[|M_O| = 1 \]
\[\alpha^O_A = \frac{|M_O|}{|M_A|} \alpha_A \]
\[\alpha^O_B = \frac{|M_O|}{|M_B|} \alpha_B \]
Correlation tracking

Localization bitmasks:
Track the spatial location of coverage

\[\alpha_A = 0.2 \]
\[|M_A| = 5 \]

\[\alpha_B = 0.13 \]
\[|M_B| = 3 \]

\[\alpha'_A \]
\[|M'_A| \]
Inside the *potential* overlap region O

- Assuming decorrelation \rightarrow OVER blending (*multiplicative composition*)

- Use ad-hoc *fuzziness* heuristic \rightarrow Transition ADD \leftrightarrow OVER
 - $\frac{|M_A|}{\alpha_A} \times \text{sadp}(A, B)$
Semi-Analytic MSAA

1/4 Resolution

MSAA

- 256x
- 64x
- 32x

Semi-Analytic

~6x faster
256x MSAA

Semi-Analytic
Thank You !
Memory consumption

Without compression

- **Without color**:

 Our approach: 36 Bytes/pixel

 MSAA 8x: 24-32 Bytes/pixel

 MSAA 32x: 96-128 Bytes/pixel

- **With fp16 color**:

 Our approach: 42 Bytes/pixel

 MSAA 8x: 72-80 Bytes/pixel

 MSAA 32x: 288-320 Bytes/pixel

Aggregate / Fragment Visibility rep. (42 Bytes)

- **C**: Color (3x 2B)
- **α**: Coverage (4B)
- **M**: Localization Mask (4B)
- **S**: Depth Slab

 Plane equation (4x 4B) + thickness (4B)
- **Z_{min}, Z_{max}**: Depth range (2x 4B)