A Practical and Efficient Approach for Correct Z-Pass Stencil Shadow Volumes

Baran Usta Leonardo Scandolo Markus Billeter Ricardo Marroquim Elmar Eisemann

Delft University of Technology
Shadow Volumes

- Detect Silhouette Edges
- Extend to the infinity
 - Generating quads
- Volume in between the quads
Shadow Volumes
Hard Shadow Rendering

• Ray Tracing
 • [Appel 1968]

• Irregular Z-Buffer
 • [Johnson et al. 2005]

• Shadow Volumes
 • [Crow 1977]

Real time support is not widespread on current commodity hardware

Inconsistent performance
Shadow Volumes [Crow 1977]
Shadow Volumes [Crow 1977]
Z-Pass [Heidmann 1991]

1. Render Pass (Fill Depth Buffer)

2. Render Pass (Stencil)
 - Detect silhouette edges
 - Generate shadow volumes
 - Update stencil values with enabled depth test
Z-Pass [Heidmann 1991]

1. Render Pass (Fill Depth Buffer)

2. Render Pass (Stencil)
 - Detect silhouette edges
 - Generate shadow volumes
 - Update stencil values with enabled depth test

3. Render Pass (Shading)
 - Pixels with stencil value 0 are lit
Z-Pass Limitation

- Remark
 - What if the light source is in shadow?
Z-Pass Limitation

- Remark
 - What if the light source is in shadow?
- Fail case for Z-Pass
Z-Pass
Stencil Shadow Volumes

1. Render Pass (Fill Depth Buffer)

2. Render Pass (Stencil)
 • Detect silhouette edges
 • Generate shadow volumes
 • Update stencil values

3. Render Pass (Shading)
 • Pixels with stencil value 0 are lit
Z-Fail [Carmack 2000, Everitt & Kligard 2002]

- Cut shadow volumes against scene Bbox
- Create Caps
- We can count intersections to any point outside the Bbox
Z-Fail

- Depth Clamping
Z-Fail

- Can we count from any point?
Z-Fail

- Pick a point behind the far plane

- Count the shadow quads between visible point and the picked point.

- In practice: enabling inverse depth test
Z-Fail

1. Render Pass (Fill Depth Buffer)

2. Render Pass (Stencil) with depth clamp
 - Detect silhouette edges
 - Generate shadow volume
 - Render Front & Back Cap
 - Update stencil values
 - Enabled inverse depth test

3. Render Pass (Shading)
 - Pixels with stencil value 0 are lit
Z-Fail Limitations

1. Render Pass (Fill Depth Buffer)

2. Render Pass (Stencil) with depth clamp
 - Detect silhouette edges
 - Generate shadow volume
 - Render Front & Back Cap
 - Update stencil values
 - Enabled inverse depth test
 Excessive overdraw

3. Render Pass (Shading)
 - Pixels with stencil value 0 are lit
ZP+ [Horus et al. 2005]

1. Z-Pass shadow calculation
2. Render Pass (from light source)
 • Light source to near plane
 • Update all the stencil values
ZP+ [Hornus et al. 2005]

1. Render Pass (Fill Depth Buffer)

2. Render Pass (Stencil)
 a. From light source to near plane
 • Update stencil values
 b. From camera to scene
 • Detect silhouette edges
 • Generate shadow volumes
 • Update stencil values with enabled depth test

3. Render Pass (Shading)
 • Shade the pixels with 0 stencil
ZP+ Limitations

1. Render Pass (Fill Depth Buffer)

2. Render Pass (Stencil)
 a. From light source to near plane
 • Update stencil values
 b. From camera to scene
 • Detect silhouette edges
 • Generate shadow volumes
 • Update stencil values with enabled depth test

3. Render Pass (Shading)
 • Shade the pixels with 0 stencil

Implementation Complexity

Full screen size draw
++ZP [Eisemann et al. 2011]

1. Standard Z-Pass
2. Render Pass
 • Light source to camera
 • 1 pixel sized target
3. Depth Clamp
1. Render Pass (Depth)
2. Render Pass (Stencil)
 a. From light source to camera
 • 1 pixel render target
 b. From camera to scene (Z-Pass w/ depth clamping)
 • Detect silhouette edges
 • Generate shadow volumes
 • Update stencil values with enabled depth test
3. Render Pass (Shading)
 • Shade the pixels with 0 stencil
++ZP Limitations

1. Render Pass (Depth)

2. Render Pass (Stencil)
 a. From light source to camera
 • 1 pixel render target
 b. From camera to scene
 (Z-Pass w/ depth clamping)

3. Render Pass (Shading)
 • Shade the pixels with 0 stencil

Our approach combines these two passes

Draw call for the whole scene
Our Method
Atomic ZP

1. Render Pass (Depth)

2. Render Pass (Stencil) with depth clamp
 - Test triangle intersection with ray from light to camera and whether front facing
 - Increment the atomic counter
 - Detect silhouette edges
 - Generate shadow volumes
 - Update stencil values with enabled depth test

3. Render Pass (Shading)
 - If stencil value plus the atomic counter equals 0 the point is lit
Results

1. Render Pass (Fill Depth Buffer)

2. Render Pass (Stencil)
 a. From Light to * (ZP+ & ++ZP)
 b. From camera to scene
 • Detect silhouette edges
 • Render shadow quads
 • Update stencil values

3. Render Pass (Shading)
Results

- Z-Pass
- Z-Fail
- ZP+
- ++ZP
- Atomic ZP
Results

Citadel

Buddha
Conclusion

▪ Easy to implement, artifact free

▪ Avoids additional Render Pass (ZP+ & ++ZP)

▪ Avoids Rendering Hidden Geometry and Caps (Z-Fail)

▪ Performs on par with Z-Pass
 • 1 ray cast per light facing triangle overhead
A Practical and Efficient Approach for Correct Z-Pass Stencil Shadow Volume

http://graphics.tudelft.nl

Baran Usta b.usta@tudelft.nl
Leonardo Scandolo l.scandolo@tudelft.nl
Markus Billeter m.billeter@tudelft.nl
Ricardo Marroquim r.marroquim@tudelft.nl
Elmar Eisemann e.eisemann@tudelft.nl

Questions?

This work was supported by DyViTo that is funded by the European Union’s Horizon 2020 programme under grant agreement No 765121 and partially funded by Swiss National Science Foundation Advanced Postdoc Mobility Project 174321.